WWW.DISS.SELUK.RU

БЕСПЛАТНАЯ ЭЛЕКТРОННАЯ БИБЛИОТЕКА
(Авторефераты, диссертации, методички, учебные программы, монографии)

 

Pages:   || 2 |

«ФОТОДИНАМИЧЕСКАЯ ТЕРАПИЯ В ОФТАЛЬМОЛОГИИ Москва 2006 УДК ББК И. Б. Медведев, Е. И. Беликова, М. П. Сямичев Фотодинамическая терапия в офтальмологии. – М.:, 2006. – с. Монография посвящена ...»

-- [ Страница 1 ] --

И. Б. Медведев, Е. И. Беликова, М. П. Сямичев

ФОТОДИНАМИЧЕСКАЯ ТЕРАПИЯ В ОФТАЛЬМОЛОГИИ

Москва

2006

УДК

ББК

И. Б. Медведев, Е. И. Беликова, М. П. Сямичев

Фотодинамическая терапия в офтальмологии. – М.:, 2006. – с.

Монография посвящена крайне актуальному вопросу современной клинической

офтальмологии – лечению больных с наличием субретинальной неоваскулярной мембраны методом фотодинамической терапии. Особо следует подчеркнуть, что в отечественной литературе практически отсутствуют работы на эту тему.

Существование в офтальмологии в настоящее время многочисленных оптических (гиперокуляры, телескопические очки, оптико-телевизионные методы увеличения изображения, комбинация очки-контактные линзы), консервативных (медикаментозная терапия), хирургических (удаление субретинальных мембран, транслокация сетчатки) и лазерных методов лечения данной тяжелой группы пациентов свидетельствует об отсутствии единого подхода к терапии заболевания.

В работе представлен анализ литературных и собственных данных по истории метода, патогенезу развития мембран, характеру взаимодействия лекарственных препаратов и патологических тканей под действием света. Исследование основывается на собственных исследованиях со сроком наблюдения от 6 месяцев до 4 лет. В результате накопленных литературных и клинических данных авторы впервые в нашей стране формулируют показания и противопоказания для применения фотодинамической терапии для лечения субретинальных мембран у больных с различными хориоретинальными патологиями.

Книга иллюстрирована 60 рисунками, 6 таблицами и схемеми, имеет 142 литературные ссылки.

Книга рассчитана на специалистов офтальмологов, студентов медицинских институтов.

УДК ББК ISBN Издательство,

ОГЛАВЛЕНИЕ

Стр.

1. ВВЕДЕНИЕ………………………………………………………………………………………

2. ХОРИОИДАЛЬНАЯ НЕОВАСКУЛЯРИЗАЦИЯ ПРИ ЗАБОЛЕВАНИЯХ ГЛАЗНОГО

ДНА…………………………………..…………………………………………………………...

3. ИНСТРУМЕНТАЛЬНАЯ ДИАГНОСТИКА ХОРИОИДАЛЬНОЙ

НЕОВАСКУЛЯРИЗАЦИИ………………………………………………………………..……..

4. СОВРЕМЕННЫЕ МЕТОДЫ ЛЕЧЕНИЯ ХОРИОИДАЛЬНОЙ

НЕОВАСКУЛЯРИЗАЦИИ.………………………...…………………………………………… 5. ИСТОРИЯ ФОТОДИНАМИЧЕСКОЙ ТЕРАПИИ…………………………………………….

6. МЕХАНИЗМ ДЕЙСТВИЯ, ЛОКАЛИЗАЦИЯ ФОТОСЕНСИБИЛИЗАТОРОВ…………….

7. ФОТОСЕНСИБИЛИЗАТОРЫ В ОФТАЛЬМОЛОГИИ……………………………………….

8. ЭКСПЕРИМЕНТАЛЬНОЕ И КЛИНИЧЕСКОЕ ПРИМЕНЕНИЕ ФОТОДИНАМИЧЕСКОЙ

ТЕРАПИИ В ОФТАЛЬМОЛОГИИ……………………………………………………………..

9. ФОТОДИНАМИЧЕСКАЯ ТЕРАПИЯ С ВИЗУДИНОМ В ЛЕЧЕНИИ ХОРИОИДАЛЬНОЙ

НЕОВАСКУЛЯРИЗАЦИИ ПРИ МАКУЛЯРНОЙ ПАТОЛОГИИ…………………………… 10. МЕТОДИКА ВЫПОЛНЕНИЯ ФДТ……………………………………………………………… 11. СОБСТВЕННЫЕ НАБЛЮДЕНИЯ……………………………………………………………… 12. ИЛЛЮСТРАЦИИ………………………………………………………………………………… 13. ЛИТЕРАТУРА…………………………………………………………………………………….

ВВЕДЕНИЕ

Лечение сенильной макулодистрофии (СМД) с неоваскуляризацией, оказывающей разрушительное действие на центральное зрение, остается одной из неразрешимых проблем современной офтальмологии.

Заболевание наиболее распространено среди городского населения пожилого возраста. На протяжении последних трех десятилетий диагностика данного недуга стала гораздо точнее, а достижения в области эпидемиологии, генетики, в частности ангиогенетики, способствовали формированию более глубокого понимания патофизиологического аспекта заболевания.

Несколько лет назад единственным доступным методом лечения, который довольно спорно можно было назвать успешным, и который применялся у небольшого числа больных, была лазерная коагуляция сетчатки. В настоящее время, известным доступным и наиболее успешным методом воздействия на СМД с субфовеальной неоваскуляризацией, является фотодинамическая терапия (ФДТ). В ходе многоцентровых рандомизированных клинических исследований ФДТ с вертепорфином было продемонстрировано, что ФДТ способна эффективно снижать риск потери зрения у значительной части больных СМД с субфовеальной неоваскуляризацией.

Областью применения ФДТ стали не только раковые опухоли, но и варикозные посттромбофлебитические болезни, лимфостазы, заживление ран, трофические язвы и др.

В настоящее время в мире проводятся и другие крупные фотосенсибилизаторов, а также изучаются новые препараты на моделях животных. В том числе и мы совместно с нашими партнерами готовы к выпуску нового отечественного препарата.

В доступной литературе механизм терапевтического воздействия и последовательность реакций при ФДТ представляется следующим образом. На первом этапе внутривенно вводится основной компонент лечения - фотосенсибилизатор, который накапливается в патогенных клетках. Второй этап – это лазерное воздействие, вызывающее изменение химической структуры препарата и образование свободного внутриклеточного кислорода, что в свою очередь и приводит к гибели патологичеких клеток неоваскулярной мембраны.

Целью настоящей книги является предоставление широкому кругу офтальмологов информации об истории и принципах ФДТ, о доклинических исследованиях различных фотосенсибилизирующих красителей в эксперименте, а также о методике и опыте применения ФДТ в клинике. В нашей работе мы обобщили опыт группы зарубежных ученых, имеющих обширную практику в области фотодинамической терапии, а также свои наблюдения. К сожалению, мы пока единственный центр в Москве, у которого на вооружении находится этот метод.





Надеемся, что эта книга будет интересна специалистам по витреоретинальной патологии и офтальмологам, сталкивающимся с проблемами возрастной патологии сетчатки.

ХОРИОИДАЛЬНАЯ НЕОВАСКУЛЯРИЗАЦИЯ

ПРИ ЗАБОЛЕВАНИЯХ ГЛАЗНОГО ДНА

Фотодинамическая терапия – технология, позволяющая достаточно эффективно лечить хориоидальную неоваскуляризацию в заднем полюсе глаза, а именно в фовеа.

Наиболее часто хориоидальная неоваскуляризация (ХНВ), или субретинальная неоваскулярная мембрана (СНМ), развивается на фоне сенильной макулодистрофии и миопии высокой степени. ХНВ описана также при ангиоидных полосах сетчатки, предполагаемом гистоплазмозе глаз, центральной серозной хориоретинопатии, после прямой лазеркоагуляции точек «просачивания» в макуле и контузионных повреждений, в идиопатических случаях.

Несмотря на то, что СНМ встречается при различных нозологических формах и является осложнением вышепересичленных состояний макулярной области, тем не менее, эти патологические образования однотипны по механизмам развития, по строению и по исходным визуальным результатам.

Этиология СНМ до конца не изучена. К основным факторам ее развития относят наследственные обменные изменения в хориокапиллярном слое и пигментном эпителии сетчатки, сосудистые заболевания, системные нарушения обменных веществ, токсические и световые повреждения. Среди факторов риска выделяют курение, гипертоническую болезнь, характер питания и некоторые глазные состояния.

Вероятность потери зрения при СНМ колеблется значительно и зависит от стадии заболевания, возраста, расы, пола.

Сенильная макулодистрофия (син.: центральная инволюционная хориоретинальная дистрофия, связанная с возрастом макулодистрофия, наследственные друзы, центральный хориоидит Хатчинсона-Тая, левантийская маляция сетчатки, поверхностный хориоидит ХолтхаусаБатена, медоподобный хориоидит Дойна) - заболевание центрального отдела глазного дна у лиц пожилого и старческого возраста. Имеет наследственную предрасположенность. Характеризуется атеросклеротическим, аутоиммунным, клеточным и гуморальным поражением хориокапиллярного слоя, концевых капилляров сетчатки в области макулы, мембраны Бруха, пигментного эпителия сетчатки, а также на поздних стадиях и нейроэпителия. В подавляющем большинстве случаев поражаются оба глаза.

СМД – наиболее частая причина легальной слепоты (острота зрения менее 0,01 в лучше видящем глазу) у людей старше 50 лет в Европе, США, Австралии. По предварительной оценке в США количество пациентов с СМД будет увеличиваться и захватит к 2020 году почти миллиона людей. В настоящее время их около 640 тыс. У лиц старше лет распространенность развитой СМД в США оценивается как 1,5% и возрастает до 15% у белых женщин старше 80.

По данным отечественных ученых на долю СМД приходится примерно 14%, а у лиц в возрасте старше 50 лет – 45,9% от всех случаев сосудистых заболеваний. Кроме того, СМД служит одной из наиболее распространенных причин инвалидности по зрению.

Выделяют следующие формы СМД:

I. Неэкссудативная (сухая, предисциформная) форма: ретинальные друзы, дефекты пигментного эпителия, перераспределение пигмента, атрофия пигментного эпителия и хориокапиллярного II. Экссудативная (влажная, дисциформная) форма:

1) стадия экссудативной отслойки пигментного эпителия;

2) стадия экссудативной отслойки нейроэпителия;

3) неоваскулярная стадия;

4) стадия экссудативно-геморрагической отслойки пигментного III. Рубцовая форма.

Началом дистрофического процесса при СМД служит появление друз в центральной и парацентральной зонах сетчатки. Некоторые офтальмологи считают друзы проявлением нормального процесса старения, так как у части пациентов друзы остаются стабильными в течение многих лет и не вызывают заметного снижения зрения. У других пациентов друзы являются первым признаком СМД.

Друзы представляют собой скопление коллоидного вещества между мембраной Бруха и пигментным эпителием. По Sarks, друзы могут быть разделены на твердые, или гиалинизированные, мягкие, или серозные, и кальцифицированные, или регрессирующие.

Твердые друзы – мелкие, с четкими границами, дают раннюю гиперфлюоресценцию и позднее затухание свечения на флюоресцентной ангиографии (ФА). При биомикроскопии видна гиалиновая структура друз. Они обычно не сопровождаются серозной отслойкой пигментного эпителия сетчатки. Если на их фоне отмечается снижение зрения, то обычно это происходит вследствие развития ХНВ. Тем не менее, над друзами происходит атрофия клеток пигментного эпителия сетчатки, что при их центральном расположении может снижать остроту зрения.

Мягкие, или серозные, друзы более крупные, бледные, менее четко очерченные, чем твердые. Они имеют тенденцию образовывать группы или сливаться. Гистологически они выглядят аморфными или гранулированными и сопровождаются дегенеративными изменениями пигментного эпителия сетчатки. На ФА они могут быть гипофлюоресцентными за счет накопления липидов и нейтральных жиров.

К сожалению, этот тип друз сопровождается серозной отслойкой пигментного эпителия сетчатки и высоким риском снижения зрения.

Дальнейшее развитие процесса приводит к появлению субретинальной неоваскуляризации и переходу заболевания в экссудативногеморрагическую стадию. В последующем возможны резорбция геморрагий и развитие фиброзной рубцовой ткани.

Кальцифицированные, или регрессирующие, друзы – белее и плотнее, чем мелкие друзы, у них обычно неровные края. Они представляют собой остатки твердых друз. Покрывающий их пигментный эпителий атрофирован.

Пациенты с умеренным количеством друз в заднем полюсе глаза имеют высокий риск прогрессирования СМД (18% за 5 лет) и развития ХНВ или географической атрофии. Приблизительно 50 – 60% пациентов с экссудативной формой СМД имеют риск значительного снижения остроты зрения в течение 5 лет.

Нарушение проницаемости мембраны Бруха приводит к скоплению жидкости под пигментным эпителием и формированию его отслойки. На глазном дне можно увидеть куполообразно проминирующий очаг с четкими границами. При этом острота зрения может оставаться нормальной или поддаваться коррекции положительными линзами. При нарушении межклеточных связей между пигментным и нейроэпителием возникает серозная отслойка последнего. Больные отмечают при этом появление скотом, метаморфопсий, снижение контрастной и цветовой чувствительности, остроты зрения. Развивающиеся на этом фоне нарушения в нейроэпителии как правило необратимы. На глазном дне определяется куполообразное утолщение сетчатки с нечеткими границами и различной степенью выраженности дезорганизации пигментного эпителия.

В дальнейшем через мембрану Бруха из хориокапиллярного слоя в сетчатку начинают врастать сосуды - развивается хориоидальная неоваскуляризация. Происходит формирование субретинальной неоваскулярной мембраны. На глазном дне она выглядит как очаг грязносерого цвета. Неполноценные стенки новообразованных сосудов склонны к разрыву, что чревато развитием обширных суб- и интраретинальных геморрагий с дальнейшим формированием в месте их расположения фиброза. Эти изменения значительно и необратимо снижают остроту зрения.

По данным флюоресцентной ангиографии различают несколько видов ХНВ.

Классификация хориоидальной неоваскуляризации * (Macular Photocoagulation Study Research Group, 1991) I. Классическая ХНВ (субретинальная неоваскулярная мембрана).

II. Скрытая ХНВ:

- фиброваскулярная отслойка пигментного эпителия;

- просачивание из неопределяемого источника в фазу рециркуляции III. Предполагаемая ХНВ (другие ангиографические признаки, ассоциируемые с наличием ХНВ):

- геморрагия по краю ХНВ;

- зоны проминирующего блока свечения хориоидеи (вследствие гиперплазии пигментного эпителия или ретинального фиброза);

- серозная отслойка пигментного эпителия.

По локализации относительно фовеа выделяют: * юкстафовеальную ХНВ (1 – 199 мкм от фовеа);

экстрафовеальную ХНВ (далее 200 мкм от фовеа).

* - подробное описание в главе «Инструментальная диагностика хориоидальной неоваскуляризации»

Как видно из представленной ниже схемы, скрытая ХНВ располагается под ПРЭ, поэтому без проведения специальных диагностических исследований убедиться в ее наличии затруднительно.

(Усовершенствованная схема van den Bergh H, et al. PDT of choroidal neovascularisation associated with age-related macular degeneration.

Photodinam News 2001;4:4-8) Схема расположения новообразованных сосудов при различных ПРЭ – пигментный ретинальный эпителий, МБ – мембрана Бруха На втором месте среди нозологий, осложняющихся развитием ХНВ, находится миопия. Распространенность миопии варьирует в широком диапазоне в разных географических областях. В Соединенных Штатах у 25% населения выявляется близорукость, в Исландии у 21%, в Швеции у 9%. Частота возникновения миопии является крайне высокой в Азии, особенно в Японии и Китае, где она достигает 75% к 15 годам. Ее распространение также зависит от специфических особенностей каждой страны, пола и расы. Она возникает чаще у женщин и азиатов, но реже встречается у африканцев и афроамериканцев. В то же время, доля миопии не превышает 2 - 5% у австралийских аборигенов и среди жителей Соломоновых Островов.

Патологическая миопия, превышающая 6 диоптрий, выявляется в 6 среди всей миопической популяции. Она встречается у 0,5 - 2% населения Соединенных Штатов Америки и Европы. Кроме того, она занимает седьмое место среди факторов, приводящих к слепоте в мире.

Патологическая миопия характеризуется прогрессирующим удлинением глазного яблока, а также рядом дистрофических изменений в склере, хориоидее, мембране Бруха, пигментном эпителии сетчатки и в других слоях сетчатки. У больных с миопией в 6 и более диоптрий или с длиной зрительной оси 25мм. и более существует высокая вероятность возникновения поражений сетчатки. Подобное удлинение приводит к увеличению объема глазного яблока на 50% по сравнению с нормальным глазом. В перечень изменений на глазном дне в заднем полюсе, сопровождающих патологическую миопию, входят перипапиллярные дистрофические изменения, задняя стафилома, поверхностные трещины или разрывы мембраны Бруха, субретинальные кровоизлияния, возникновение областей атрофии в пигментном эпителии сетчатки и хориоидее, появление хориоидальной неоваскуляризации.

ХНВ при миопии является следствием атрофии хориокапиллярного слоя и грубых микроциркуляторных нарушений. Ее развитие и прогноз снижения зрения сопоставимы с таким при СМД. К сожалению, ХНВ при патологической близорукости чаще всего располагается субфовеально и ведет себя «агрессивнее» чем при СМД. У 62% пациентов моложе 50 лет ХНВ развивается на фоне близорукости.

Остальные заболевания, которые могут осложниться развитием хориоидальной неоваскуляризации, встречаются несопоставимо реже.

Подход к лечению ХНВ независимо от вида первичного патологического процесса в заднем полюсе глаза аналогичен описанному при СМД.

ИНСТРУМЕНТАЛЬНАЯ ДИАГНОСТИКА ХОРИОИДАЛЬНОЙ

НЕОВАСКУЛЯРИЗАЦИИ

Основным методом диагностики и клинической верификации наличия субретинальной неоваскулярной мембраны является флюоресцентная ангиография (1-3). В основе метода лежит возможность наблюдать заполнение сосудов глазного дна красителем благодаря прозрачности оптических сред глаза.

В качестве красителя используется флюоресцеин. Он нетоксичен для пациента. Опасность представляют аллергические реакции и реакции на щелочное вещество, которое используется в качестве растворителя.

Наиболее часто, в первую минуту после введения препарата, можно ожидать появление кратковременной тошноты у обследуемого. Крайне редко бывают анафилактические реакции. Описаны инфаркт миокарда, остановка дыхания и сердца во время введения препарата. Учитывая вышеперечисленное, присутствие врача при введении флюоресцеина обязательно. Пациента необходимо предупредить о наступлении кратковременного засвета после процедуры, возможности появления тошноты, прокрашивания склер и кожи красителем в течение суток и интенсивном окрашивании мочи до выведения препарата.

Для выполнения ФА используют готовые формы флюоресцеина в виде 10% (5 мл в ампуле) или 25% (3 мл в ампуле) раствора. 25% раствор флюоресцеина легче переносится пациентами и вызывает меньше осложнений. Препарат вводится в крупную вену, обычно в локтевую, струйно с высокой скоростью. Время введения занимает 2 – 3 секунды.

Для улучшения качества снимков затем можно ввести небольшое количество физиологического раствора.

Регистрацию ФА осуществляют с помощью фундус-камеры, излучающей синий свет с длиной волны 480 – 500 нм и имеющей фильтр 500 – 600 нм в режиме фотографирования. Данные длины волны соответствуют пикам поглощения света флюоресцеином и его свечения в возбужденном состоянии. Высококачественно ФА можно выполнить так же на лазерном ретинальном томографе и лазерном сканирующем офтальмоскопе.

На начальном этапе применения методики осуществляли фотографирование глазного дна на пленку с интервалом в 1 секунду.

Затем пленка проявлялась, печатались фотографии, по которым проводился окончательный анализ ФА. Развитие техники позволило выполнять цифровое фотографирование, архивирование и обработку данных. Это значительно сократило временные затраты и увеличило информативность исследования. Есть возможность видеорегистрации ФА и просмотра ангиографии в масштабе реального времени.

Выделяют несколько фаз заполнения сосудов глазного дна.

В первую (преартериальная фаза) заполняются сосуды хориоидеи. Ее продолжительность около 1 секунды. Характеризуется появлением свечения глазного дна. Ретинальные сосуды темные. Начало этой стадии или время «рука – сетчатка» составляет 12 – 15 секунд. Это время может увеличиваться при нарушении техники введения препарата и снижении скорости кровотока.

Во вторую (артериальную фаза) заполняются артерии сетчатки.

Появление пристеночного свечения вен говорит о начале артериовенозной (третьей) фазы.

В четвертую (венозная фаза) вены на всем протяжении полностью заполняются красителем, а интенсивность свечения артерий уменьшается.

Затем следует фаза рециркуляции, в течение которой флюоресцеин циркулирует в крови, разводится и теряет яркость свечения.

Анализируется время заполнения сосудов, их калибр, форма, ход, характер свечения хориоидеи (фоновое свечение). В области расположения ксантофильного пигмента и отсутствия ретинальных сосудов (окружность 350 мкм в диаметре в центре макулы) в норме свечения нет.

Нормальные сосуды сетчатки не пропускают флюоресцеин.

Пропотевание флюоресцеина, или leakage, указывает место нарушения целостности и позволяет оценить характер патологического процесса.

Фенестрированные стенки хориокапилляров попускают флюоресцеин. В результате может наблюдаться прокрашивание склеры и рубцов красителем. По этой же причине хориоидея на ФА выглядит как пятнистое поле.

К патологическим изменениям на ФА относят гиперфлюореценцию, которая может быть обусловлена повышенной яркостью свечения сосудов, наличием патологических новообразованных сосудов, выходом (пропотеванием) красителя из сосудов или дефектами в экранирующем пигментном ретинальном эпителии, и гипофлюоресценцию вследствие снижения кровенаполнения хориоидеи и сосудов сетчатки, наличия патологических экранирующих образований.

При проведении ФА можно столкнуться с аутофлюоресценцией некоторых образований на глазном дне, например, друз. Чтобы исключить ложную интерпретацию ангиографии, до введения флюоресцеина, необходимо в возбуждающем свете фундус-камеры выполнить несколько контрольных снимков. Качественные фильтры современных камер отсекают аутофлюоресценцию.

Изменения, выявленные на ФА, описываются по отношению к анатомическому строению макулы (диаметр около 500 мкм), в центре которой выделяют ямку желтого пятна или фовеолу (50 мкм) и само желтое пятно или фовеа (350 мкм). Фовеола расположена под центральным (фовеолярным) световым рефлексом.

По данным ФА принято выделять две большие группы ХНВ:

классическую и скрытую (4).

При наличии классической СНМ, область патологических новообразованных сосудов расположена между слоем пигментного ретинального эпителия и нейроэпителием. Локальная гиперфлюоресценция неоваскулярной сети с четкими границами проявляется сразу за заполнением хориоидеи красителем. Иногда отчетливо просматривается питающий сосуд. По мере заполнения сосудов сетчатки флюоресцеином неоваскулярная сеть теряет свои очертания, «смазывается» (2,5). Вследствие пропотевания флюоресцеина «замазываются» и границы СНМ. Чем сильнее leakage, тем «активнее»

мембрана и выше риск ее осложнения отслойкой нейроэпителия и кровоизлиянием.

Скрытая хориоидальная неоваскуляризация подразделяется на фиброваскулярную отслойку пигментного эпителия (тип 1) и просачивание из неопределяемого источника (тип 2) (2).

Фиброваскулярная отслойка пигментного эпителия характеризуется наличием неоваскуляризации под пигментным ретинальным эпителием.

На ФА появляется точечное свечение в раннюю венозную фазу, которое в фазу рециркуляции «растекается» в светящееся пятно с относительно четкими границами.

Для 2-го типа скрытой ХНВ характерно наличие позднего многофокусного свечения с прогрессивным увеличением яркости.

Гиперфлюоресценция не имеет четких границ.

Для определения характера скрытой ХНВ полезно выполнение индицианин зеленой ангиографии (6,7).

Довольно часто в одном глазу встречается сочетание классической и скрытой ХНВ (8). В этих случаях выделяют преимущественно классические очаги ХНВ - площадь классической СНМ в которых более 50%, и минимально классические очаги ХНВ, в которых достоверно определяются участки классической СНМ, площадь которых не превышает 50%.

По отношению к фовеа очаги ХНВ могут быть экстрафовеальными (200 мкм от фовеа), юкстафовеальными (от 1 до 199 мкм от фовеа) и субфовеальными. Экстрафовеальные СНМ можно достаточно безопасно лечить прямой лазеркоагуляцией. При юкстафовеальном и субфовеальном расположении неоваскуляризации велик риск прямого и опосредованного повреждения центральной части желтого пятна с необратимой потерей зрения в случае агрессивных вмешательств. Реальную помощь данной группе больных может оказать ФДТ с визудином.

Проведение ФА в динамике у больных, которые не получали ФДТ, показало достаточно быстрый рост ХНВ, в среднем 18 мкм в сутки.

Отсутствие своевременного, патогенетически обусловленного воздействия на ХНВ приводит к развитию кровоизлияний, иногда профузных, и развитию дисковидного рубца с различной степенью пигментации. В редких случаях возможно самопроизвольное запустевание ХНВ.

Через 3 месяца после ФДТ проводят контрольную ФА. Оценивают размеры ХНВ, соотношение классических и скрытых очагов ХНВ (стабильность и тип). Наличие пропотевания (раннего или отсроченного) из любого компонента ХНВ является показанием к повторению ФДТ. В идеале ожидается полная облитерация ХНВ и повышение остроты и качества зрения. Чаще регистрируется неактивная (без пропотевания) ХНВ с частичной или отсроченной перфузией. Это позволяет сохранить пациенту остроту зрения на прежнем уровне или сдержать развитие процесса с потерей не более 1 – 3 строк в остроте зрения. Достижение такого результата вероятно при проведении 5 – 6 (максимально до 8) сеансов ФДТ в течение 2 лет.

От проведения повторных сеансов ФДТ отказываются при крайне низкой остроте зрения и большом очаге поражения, когда низка вероятность предотвратить дальнейшее прогрессирование процесса и повысить качество жизни больного.

Также противопоказанием к проведению повторных сеансов ФДТ является разрыв ретинального пигментного эпителия, который может возникнуть в области отслойки пигментного эпителия. На ФА он виден в виде гиперфлюоресцирующего полумесяца. При возникновении разрыва может возникнуть профузное кровотечение, маскирующее подлежащие изменения.

При наличии диагностированной в начале лечения преимущественно классической ХНВ через 12 месяцев после ФДТ ожидается наличие пропотевания в 46% случаев, а через 24 месяца - в 23%. При скрытой форме ХНВ этот процент возрастает до 55 и 46 соответственно. Однако при этом не отмечается значительной потери остроты зрения (3 - 6 строк).

Следовательно, только по данным ФА нельзя говорить о критериях успеха ФДТ с визудином.

Установлено, что только при наличии классической СНМ, выявленной в начале лечения, по ее размерам, расположению и активности можно прогнозировать успех ФДТ. При наличии скрытых форм ХНВ значительное влияние на успех лечения оказывают исходный размер очага и острота зрения. При начальном размере ХНВ менее площадей диска зрительного нерва в обеих формах ХНВ результаты лечения ожидаются гораздо выше, чем при больших размерах.

Многие вопросы, возникающие при проведении ФА, могут быть разрешены при проведении индицианин зеленой ангиографии.

Индицианин зеленый (ИЗ) представляет собой стерильный водорастворимый краситель, который в возбужденном состоянии излучает свет с длиной волны от 790 до 805 нм (красный пограничный с инфракрасным) (9-12). Данное излучение хорошо проходит через пигментный ретинальный эпителий, кровоизлияния, скопление липидов, пигмента, отеки (13). Благодаря этому удается получить подробное изображение хориоидеи, очагов ХНВ.

На индицианин зеленой ангиографии выделяют четыре типа ХНВ:

полипоидную хориоидальную васкулопатию (ПХВ) ангиоматозное разрастание сетчатки (АРС).

К «горячим» узлам относят четко определяемые области гиперфлюоресценции, которые обычно появляются в ранней или промежуточной фазе исследования с ИЗ и сопровождаются растеканием в поздней фазе. Таким образом проявляют себя области активной ХНВ.

Бляшки ХНВ представляют собой менее четко очерченные области позднего окрашивания ИЗ, размер которых превышает по площади 1 ДЗН.

Они соответствуют менее активному компоненту комплекса ХНВ.

Полипоидная хориоидальная васкулопатия является проявлением первичного нарушения циркуляции в хориоидее. Для нее характерно завершение сосудов хориоидеи аневризмоподобными вздутиями или расширениями, клинически определяемыми в виде красно-оранжевых, сфероподобных, полипоидных структур. Эта патология сопровождается возникновением множественных, рецидивирующих, серозногеморрагических отслоений пигментного ретинального эпителия и нейросенсорного отдела сетчатки, вторичных изменений хориоидальных сосудов (14,15). При проведении ангиографии с ИЗ в начальной фазе появляется четкая сеть сосудов хориоидеи. У больных с вовлечением в процесс юкстапапиллярного слоя сосуды распространяются радиально, с образованием арок, и связаны между собой мелкими ответвлениями, которые становятся более видимыми и многочисленными по краям области ПХВ. На ранних стадиях ангиографии с ИЗ более крупные сосуды в области ХНВ начинают наполняться перед заполнением сосудов сетчатки, а сам патологический очаг выглядит темнее общего фона.

Сосуды ПХВ заполняются медленнее сосудов сетчатки. Сразу после появления на ИЗ ангиографии сети в пределах хориоидеи визуализируются небольшие гиперфлюоресцирующие «полипы». Эти структуры соответствуют красно-оранжевым образованиям, выявляемым при клиническом обследовании. Их появление сопровождается медленным формированием областей выпота и интенсивной гиперфлюоресценцией. В поздней стадии расширенные полипоидные области теряют свечение, что нетипично для скрытой ХНВ. Возможно, что при подобной форме ХНВ с помощью ФДТ можно получить эффективное блокирование сети патологических сосудов.

Ангиоматозные разрастания сетчатки являются первым проявлением целой группы неоваскулярной сенильной макулодистрофии (16-18).

Расширенные сосуды сетчатки, преретинальные, интраретинальные и субретинальные кровоизлияния и экссудаты развиваются вокруг ХНВ.

Один или несколько компенсаторно расширенных ретинальных сосудов перфузируют и дренируют область неоваскуляризации. По мере разрастания интраретинальной неоваскуляризации в направлении субретинального пространства, ХНВ («горячие» узлы) становится частью неоваскулярного комплекса. Ангиография с ИЗ способствует более четкому выявлению отслойки пигментного эпителия (ОПЭ), так как серозный компонент ОПЭ остается затемненным в процессе исследования, а сосудистый компонент проявляется в форме «горячего»

узла (19-21). Иногда удается получить изображения ретинохориоидальных анастомозов. На ФА обычно выявляются сливающиеся области пропотевания характерные для скрытой ХНВ. Эта форма неоваскуляризации хорошо отвечает на ФДТ и лазеркоагуляцию на ранних стадиях. При развитии васкуляризации областей ОПЭ и ретинохориоидальных анастомозов ни один из видов известного лечения не оказывает заметного влияния на патологический процесс.

Ангиография с ИЗ дает возможность более детально рассмотреть изображение хориоидеи и оценить результаты ФДТ.

Оптическая когерентная томография Хорошим подспорьем в диагностике и динамическом наблюдении за больными с СНМ может стать оптическая когерентная томография (ОКТ) (22).

При проведении ОКТ, на сетчатку и хориоидею направляется свет длиной волны 830 нм. Он отражается от границы сред и плотных структур. Отраженный свет регистрируется. По насыщенности отраженного света и времени его возвращения формируется карта среза хориоидеи и сетчатки. Красный и белый цвета полученного изображения соответствуют областям с высокой отражающей способностью (пигментный эпителий сетчатки, мембрана Бруха, хориокапилляры, ХНВ), синий и черный – областям с низкой отражающей способностью (жидкости). Исследователь может увидеть псевдогистологический ретинальный срез.

ОКТ позволяет количественно оценить толщину и протяженность нормальных структур и патологических изменений (ХНВ, ОПЭ, отслойка нейроэпителия и т.п.).

ХНВ выглядит в виде области гиперотражения, расположенной над или внутри пигментного эпителия сетчатки (ПЭС), над хориоидеей.

Четкого разделения между ПЭС и ХНВ может не быть, так как они имеют одинаковые отражающие характеристики. Классическая ХНВ обычно выглядит веретенообразным утолщением комплекса ПЭС - мембрана Бруха – хориокапиллярный слой. Скрытая ХНВ (тип 2) характеризуется появлением фокальной, слабо определяемой области повышения отражающей способности перед хориоидеей. Как классическая, так и скрытая ХНВ могут быть связаны с отслоенным ПЭС.

При проведении ОКТ оценивается сохранность средних и внутренних слоев сетчатки, выраженность ОПЭ и скопления жидкости внутри сетчатки. ОКТ помогает выявить участки скрытой ХНВ, не определяемой при проведении ФА.

Четкие корреляции ФА и ОКТ не установлены.

СОВРЕМЕННЫЕ МЕТОДЫ ЛЕЧЕНИЯ

ХОРИОИДАЛЬНОЙ НЕОВАСКУЛЯРИЗАЦИИ

Проблема лечения центральных дегенеративных изменений макулярной зоны сетчатки и их осложнений беспокоит офтальмологов достаточно давно. Тактика лечения и подходы к ранней диагностике развивались вместе с развитием офтальмологии и становились более адаптированными и патогенетически направленными с внедрением новых методик исследования.

В настоящее время существует большое количество методов лечения субмакулярных неоваскулярных мембран: консервативные (альфа-интерферон, талидомид и другие системные антиангиогенетики);

лазерные (пороговая ограничительная лазеркоагуляция сетчатки, пороговая прямая "щадящая" лазеркоагуляция сетчатки, пороговая прямая "послойная" лазеркоагуляция сетчатки, субпороговая прямая инфракрасная лазеркоагуляция сетчатки, инфракрасная микроимпульсная лазеркоагуляция сетчатки, совмещенная с высокоскоростной цифровой индоцианин зеленой ангиографией фидерных сосудов); транспупиллярная термотерапия (ТТТ); микрохирургические (транслокация макулы, субмакулярное удаление СНМ и др.) и радиотерапевтические.

Каждый из них имеет свои показания и противопоказания, преимущества и недостатки, поэтому необходимо выбрать такой метод (или их сочетание), который бы являлся оптимальным с терапевтической и финансовой точки зрения и был бы наименее травматичным и наиболее доступным для пациентов.

Для поиска адекватных методов терапевтического лечения неоваскуляризации необходимо в первую очередь понять механизм роста новообразованных сосудов или ангиогенеза. Более 50 лет назад было сделано предположение, что неоваскуляризация возникает в ответ на действие фактора, стимулирующего процесс ангиогенеза. Этот фактор был назван фактором Х. Он освобождается из тканей, находящихся в состоянии ишемии, которые требуют новых сосудов с целью доставки питательных веществ. Ишемия тканей развивается при повреждении сосудов, как при СМД, диабете или в результате быстрого роста тканей, опережающего рост сосудов, так и при опухолях. Освобождение фактора Х приводит к его распространению в окружающие ткани к близлежащему сосудистому ложу, что стимулирует рост новых кровеносных сосудов к тканям, находящимся в состоянии ишемии. В 1989 году учеными был выделен эндотелиальный сосудистый фактор роста (ЭСФР). С тех пор было установлено, что ЭСФР обладает всеми характеристиками фактора Х: он вырабатывается тканями, находящимися в состоянии ишемии, и опухолевидными клетками, стимулирует рост новообразованных сосудов из нормального сосудистого ложа. В последние 10 лет разработка терапевтического лечения раковых процессов и СНМ направлена на снижение выработки ЭСФР. Влияние ЭСФР на ткани многогранно, но выделяю три основных направления: 1) стимуляция процессов ангиогенеза; 2) стимуляция повышения сосудистой проницаемости; 3) провоспалительное действие.

Известно несколько механизмов снижения центральной остроты зрения при неоваскулярной СМД. Сама хориоидальная неоваскуляризация отделяет фоторецепторы от источника питательных веществ.

Новообразованные сосуды проницаемы, что приводит к накоплению суби интраретинальной жидкости. Новообразованные сосуды имеют повышенную ломкость и часто лопаются, заполняя кровью субретинальное пространство. Ряд исследований провели параллели между неоваскуляризацией при СМД и неоваскуляризацией, вызванной ЭСФР в эксперименте. Инъекции ЭСФР в глаза приматов привели к пролиферации клеток эндотелия хориоидеи. Увеличение уровня ЭСФР привело к развитию неоваскуляризации при СМД. В эксперименте на приматах интравитреальное подавление ЭФСР блокировало процесс развития ХНВ, активированный лазерным воздействием. Образование новых сосудов с повышенной проницаемостью при СМД, угрожающее потерей зрения, является следствием действия ЭСФР. В результате подавления ЭСФР не происходит регресса существующих неоваскулярных мембран, а только предотвращается дальнейший их рост, что позволяет добиться стабилизации патологического процесса.

Улучшение зрения возможно при использовании анти-ЭСФР-терапии в результате снижения сосудистой проницаемости и, таким образом, уменьшения субмакулярного накопления жидкости.

Среди лекарственных препаратов, применяемых для лечения СМД, осложненной ХНВ, наиболее перспективными являются ингибиторы неоваскуляризации. Наиболее мощным в организме человека белкомингибитором ангиогенеза, вырабатываемым в норме пигментным эпителием сетчатки, является PEDF (pigment epithelial derived factor).

Данный фактор не только противодействует росту новообразованных сосудов, но и оказывает нейропротекторное действие, предотвращая гибель нейронов сетчатки.

Для монотерапии всех подтипов влажной возрастной дегенерации макулы в настоящее время применяется два препарата – ранибизумаб (lucentis) и пегаптаниб. Ранибизумаб вводится интравитриально. Являясь фрагментом антител к ЭСФР, он способен глубоко проникать и блокировать рост новых кровеносных сосудов, задерживая просачивание жидкости из существующих. В настоящее время препарат изучается в клинических исследованиях. В декабре 2005 года FDA разрешило клиническое применение препарата пегаптаниб натрия. Его коммерческое название – Macugen (Макуген). Механизм действия подобен ранибизумабу, он блокирует действие ЭСФР-А, который вызывает неоваскулогенез. Пегаптаниб может применяться гораздо шире, чем вертепорфин. Он безопасен и хорошо переносится больными. Однако неясно, превосходит ли пегаптаниб по эффективности визудин. Также предстоит определить сравнительное удобство и безопасность применения этих препаратов. Подобно луцентису, мукаген вводится инъекционно в глазное яблоко, в то время как визудин – внутривенно.

Получены положительные результаты по применению протеинкиназы С, эндостатина, сандостатина пролонгированного действия и других ингибиторов ангиогенеза, блокирующих ЭСФР. Обнаружены антиангиогенезные свойства у стволовых клеток мозгового вещества трубчатых костей человека. Побочным действием ингибиторов неоваскуляризации является ослабление образования коллатералей, что может представлять опасность при ишемической болезни сердца.

С 2004 года фирма Alcon Laboratories проводит сравнительный анализ препарата anecortave acetate и плацебо у пациентов с высоким риском развития СМД на одном глазу при условии наличия прогрессирующей экссудативной формы СМД на парном глазу. Препарат относится к антиангиогенным синтетическим кортизенам и вводится путем выполнения задней юкстасклеральной инъекции. Anecortave acetate обладает высокой степенью безопасности. Молекулы кортизена идентичны кортизолу, но не обладают глюкокортикоидной активностью.

Механизм действия anecortave acetate заключается в ингибировании деградации базальной мембраны, восстановлении матрикса металлопротеиназы и других факторов, к которым приводит ХНВ, поражающая прилежащую базальную мембрану Бруха.

До настоящего времени лазерная коагуляция в силу доступной стоимости и относительной эффективности остается достаточно распространенной тактикой лечения пациентов с СМД и СНМ.

Необходимо заметить, что данный метод терапии имеет определенные ограничения из-за различных видов и степеней очерченности ХНВ.

Основными критериями к назначению лазерного воздействия является острота зрения, размеры и локализация ХНВ. Наиболее эффективна лазерная коагуляция при четко очерченных классических СНМ с экстра- и юкстафовеолярным расположением.

Коагуляты второй степени интенсивности наносятся с экспозицией не менее 0,2 с на расстоянии не ближе 300-500 мкм от центра фовеолы.

Необходимо применять достаточно интенсивное воздействие, так как “неполная” лазеркоагуляция зачастую приводит к резкой активизации неоваскуляризации с выраженными транссудативными проявлениями (в основном за счет субфовеолярной ее части). По данным клинических наблюдений использование фокальной лазеркоагуляции для лечения субфовеальной неоваскулярной мембраны может уменьшить размер центральной скотомы. Однако сразу же после лечения происходит снижение остроты зрения на 0,2 – 0.3, что, несомненно, приводит к негативной реакции пациентов на проведенную терапию. В дальнейшем острота зрения может как повыситься, так и остаться без изменения или еще снизиться.

Ю.А. Иванишко (1992) предложен принцип, ориентированный на сохранение не фовеолы, нередко захваченной патологическим процессом, а новой точки фиксации взора, формирование которой является компенсаторной реакцией функции центрального зрения. Располагается новая точка фиксации взора, как правило, в наиболее сохранной части фовеолы. На первом этапе необходимо с максимальной точностью (до 100мкм) определить локализацию новой точки фиксации взора, а затем провести радикальную лазеркоагуляцию СНМ, при необходимости с захватом фовеолы. Коагуляты не должны располагаться ближе 200- мкм от новой точки фиксации. По данным автора, при использовании такой методики рецидивы и персистенция неоваскулярной мембраны наблюдаются только в 18% глаз при сроке наблюдения 2 года, а через лет и более – не превышают 30% случаев.

По мнению Л.И.Балашевича и А.С.Измайлова (23) для облучения юкста- и субфовеолярных СНМ предпочтительно создание менее яркого «умеренного» ожога сетчатки, что в большинстве случаев позволяет эффективно облитерировать новообразованные сосуды и повысить функциональные результаты лазерного лечения. Принцип состоит в увеличении экспозиции лазерного импульса, в результате чего становится возможным управлять процессом коагуляции, произвольно меняя количество наносимых коагулятов. Такая методика является промежуточной между стандартной методикой лазеркоагуляции и транспупиллярной термотерапией. Достоинством данной методики является то, что после лечения больные не жалуются на снижение зрения.

Недостатком щадящей лазеркоагуляции СНМ является возможное усиление неоваскуляризации, так как облучение субфовеолярной части СНМ не является критическим. Этот факт делает необходимым постоянное наблюдение за состоянием мембраны в послеоперационном периоде.

Несмотря на наличие в ряде случаев положительной динамики после проведения лазерной фотокоагуляции, в последнее время все чаще стали обращать внимание на отдаленные негативные последствия пороговой лазеркоагуляции, являющиеся следствием дистантного повреждения нейросенсорного слоя и ПЭС.

Метод транспупиллярной термотерапии (ТТТ) является новым направлением в исследовании минимальных субпороговых уровней энергии лазерного излучения. ТТТ впервые была применена J.A.Oosterhuis после радиационной терапии хориоидальной меланомы. Транпупиллярно тепловая энергии доставлялась к сосудистой оболочке и пигментному эпителию сетчатки посредством модифицированного диодного лазера.

Далее C.L.Shields изучил эффективность ТТТ без радиотерапии при лечении небольших меланом сосудистой оболочки и получил определенные положительные результаты.

Лечение неоваскулярной СМД методом ТТТ базируется на принципе термальной резистентности сетчатки на медленное повышение температуры, которое вызывает внутрисосудистый тромбоз, лейкостаз, склероз сосудов СНМ и, как следствие, уменьшение экссудации, прилегание отслойки пигментного эпителия сетчатки, стабилизацию или улучшение остроты зрения (24). ТТТ представляет собой лазерную инфракрасную субпороговую фотокоагуляцию, использующую различные пятна большой площади (500-3000 мкм), низкую энергию и длительную экспозицию излучения (60 с). При этом мощность может варьировать, но всегда должна составлять 248 мВт/мм2 с повышением температуры в точке облучения примерно на 10°.

Диодный лазер (=810 нм), обычно используемый для проведения ТТТ, не обладает значительной фототоксичностью для сетчатки. Пик ретинальной фототоксичности приходится на 440 нм и находится в конце голубой полосы электромагнитного спектра. Кроме того, излучение с длиной волны 810 нм максимально поглощается меланином и незначительно другими пигментами глазного дна. Учитывая существенно большее количество меланина в СНМ, чем в окружающих тканях (сетчатка и хориоидея), температура последних при ТТТ значительно ниже, чем в очаге воздействия. Тем не менее, отмечая развитие окклюзии сосудов в очаге ХНВ после ТТТ вследствие разрушения эндотелия новооразованных сосудов и тромбоза микроциркуляторного русла, ряд исследователей указывают на возможность повреждения внутренних слоев сетчатки при проведении ТТТ.

Согласно исследованиям, которые были проведены различными авторами, методика ТТТ хорошо переносится пациентами, стабилизирует или улучшает остроту зрения на 1-3 строки в 22-62,5% случаев.

По данным P. Lanzetta, P. Michieletto (2001), уже через неделю после проведения ТТТ методом ФАГ и индоцианин зеленой ангиографии выявляется отсутствие просачивания красителя из сосудов СНМ.

Оптическая когерентная томография также демонстрирует снижение суби интраретинальной экссудации и уменьшение проминенции в зоне СНМ.

Ранние васкулярные изменения в СНМ после ТТТ сходны с таковыми после проведения ФДТ.

Среди побочных эффектов ТТТ отмечают резкое снижение остроты зрения и окклюзию артериол сетчатки. В случае значительных повреждений пигментного эпителия сетчатки на фоне проводимой ТТТ повышается риск её послеоперационных разрывов. Однако необходимо заметить, что осложнения после проведения ТТТ встречаются достаточно редко. Для ТТТ, по сравнению с лазерной коагуляцией, методами хирургического удаления СНМ, ФДТ, характерен меньший риск повреждения сетчатки и относительно низкий уровень риска снижения зрительных функций в ходе лечения.

лазеркоагуляции сетчатки являются мягкие друзы при СМД и макулярный отек диабетического и посттромботического генеза.

Теоретическое обоснование применения микроимпульсного режима работы лазеров дал Панкратов в 1990 году. В микроимпульсном режиме лазер генерирует излучение, экспозиция которого равняется микросекундам. Часто повторяющиеся циклы включения микроимпульсов чередуются с периодами выключения, при этом индукция тепла от ПЭС не успевает распространиться на прилежащие слои нейроэпителия сетчатки и хореокапилляров и повредить их, так как время выключения составляет от 50 до 95% продолжительности всего импульса. В результате этого повреждающее действие лазеркоагуляции сводится к минимуму, особенно при использовании субпорогового уровня энергии. Наиболее важным и ответственным этапом микроимпульсной субпороговой инфракрасной коагуляции является тестирование коагулята при выборе уровня энергии лазерного излучения. Недостаточная мощность может не оказать необходимого терапевтического действия, а передозировка привести к излишнему повреждению ПЭС и нейроэпителия сетчатки. В результате лечения микроимпульсной инфракрасной лазеркоагуляцией сетчатки происходит рассасывание мягких друз, с последующим снижением риска развития СНМ, уменьшение или исчезновение макулярного отека, и как результат, стабилизация или улучшение зрительных функций при минимальном повреждении ПЭС и нейроэпителия сетчатки.

Радиотерапия обладает антиангиогенным действием на неоваскулярную мембрану, так как эндотелиальные клетки пролиферирующей ткани СНМ обладают повышенной чувствительностью к облучению. Лечение проводится протоновым пучком и методом эписклеральной брахитерапии с использованием палладиевого и стронциевого аппликаторов. Радиотерапия способствует регрессу СНМ и исчезновению отслойки нейросенсорной сетчатки, а также снижает экссудацию. К недостаткам радиотерапии относится то, что она не предотвращает возникновение новых неоваскулярных мембран и дальнейшего развития заболевания. К побочным отрицательным эффектам лечения следует отнести развитие полипоидной ретинопатии, которую не отмечали при использовании других методов лечения.

Микрохирургические методы лечения СНМ Хирургическое лечение СНМ в основном заключается в удалении хорошо очерченных неоваскулярных мембран. На современном этапе предлагаются различные методики транслокации макулы с трансплантацией тканей сетчатки (25-34). Выполняют трансплантацию ПЭС в субретинальное пространство и транслокацию пигментного эпителия из аутоколобомы радужки. Методы достаточно трудоемки и травматичны, часто приводят к атрофии хориокапиллярного слоя и сосудистой оболочки. Возможно развитие отслойки сетчатки, пролиферативной витреоретинопатии.

При СНМ гемофтальмы возникают нечасто. Однако, в случаях рецидивирующего течения или полного гемофтальма, показания к хирургическому лечению не вызывают сомнений.

Комбинированное интравитреальное применение триамцинолона в сочетании с фотодинамической терапией позволяет улучшить остроту зрения у пациентов с ХНВ за счет объединения кратковременного антиангиогенного эффекта ФДТ с длительным распространенным эффектом триамцинолона.

Повышение/понижение острот График динамики остроты зрения при различных подходах к лечению ХНВ по данным Albert Augustin (2005 г.). 0 – острота зрения вначале наблюдения.

Триамцинолон обладает антиангиогенным действием и уменьшает воспалительную реакцию. Препарат также уменьшает сосудистую проницаемость и сохраняется в полости стекловидного тела в течение месяцев. Однако, результаты исследований изолированного применения триамцинолона для лечения ХНВ показали, что препарат малоэффективен, так как не приводит к существенному длительному повышению остроты зрения. Необходимо отметить, что при использовании триамцинолона в сочетании с ФДТ результат повышения остроты зрения более стабилен и реже требует повторного лечения, что снижает стоимость курса комбинированной терапии по сравнению с курсом монотерапии ФДТ.

Среди побочных действий почти в 50% случаев у пациентов возникает длительная и стойкая офтальмогипертензия, реже наблюдается прогрессирование катаракты, встречаются единичные случаи эндофтальмитов.

ИСТОРИЯ ФОТОДИНАМИЧЕСКОЙ ТЕРАПИИ

Фотодинамическая терапия как метод лечения известна давно. За последнее время методика претерпела значительные изменения в связи с открытием новых фотосенсибилизирующих красителей и более тщательным изучением способов их применения. Использование экзогенных фотосенсибилизаторов для получения терапевтического эффекта было описано около 1500 лет назад, когда Псорален (получавшийся из семян Psoralia Corifolia в Индии и из листьев Amnii Majus в Египте) применяли для лечения витилиго (35).

Von Tappeiner и Rabb начали использование реакций кислородозависимой фотосенсибилизации случайно. Во время их опытов по изучению токсических свойств акридина на парамеции началась гроза.

Под воздействием акридина и световых вспышек молнии парамеция погибла, что натолкнуло исследователей на мысль об изучении свойств акридина в разных световых условиях. Они обнаружили, что воздействие света при самых незначительных концентрациях акридина приводило к повышению токсического эффекта на парамецию (36). Von Tappeiner и Jodbauer продемонстрировали зависимость этих реакций от кислорода и ввели термин «фотодинамическое воздействие» (37). Von Tappeiner и Jestoniek разработали технологию ФДТ для лечения таких кожных заболеваний, как псориаз, волчанка, кондилома и рак, с использованием в качестве фотосенсибилизатора эозина. В 1913 году Meyer-Betz продемонстрировал фотосенсибилизирующее воздействие гематопорфирина и его производных на опухоли крыс (38).

Современный вариант ФДТ был разработан после выделения в году Lipson и его коллегами (39) производного гематопорфирина (ПГП).

Совместное воздействие света и внутривенно введенного ПГП, названное методом фотооблучения, приводило к долговременному излечению опухолей у животных (40,41). В течение последующих 20 лет эти технологии применяли в лечении злокачественных новообразований мочевого пузыря, легких, области головы и шеи, головного мозга, матки и желудочно-кишечного тракта (42,43). В большинстве работ было отмечено, что поверхностные и минимально инвазивные образования дают наилучший ответ на ФДТ. Лечение крупных опухолей, как правило, требует использование более высоких доз облучения или концентрации фотосенсибилизатора для получения планируемого эффекта и связано с повышением частоты развития осложнений. В этих ранних исследованиях часто не проводилась стандартизация критериев включения, не заполнялись протоколы лечения и не фиксировались конечные точки определения уровней ответов и продолжительность периодов наблюдения, что создавало трудности интерпретации полученных в них результатов.

Усовершенствование фотосенсибилизаторов, достижения в области хранения фотосенсибилизаторов и световой дозиметрии, а также более скрупулезное оформление исследований в наши дни делают возможным проведение более четкого сравнительного анализа с самыми известными формами терапии.

МЕХАНИЗМ ДЕЙСТВИЯ, ЛОКАЛИЗАЦИЯ

ФОТОСЕНСИБИЛИЗАТОРОВ.

Для проведения фотодинамической терапии требуется введение фотосенсибилизирующего красителя, обычно внутривенно, который фиксируется в ткани-мишени. Световое облучение этой ткани в области абсорбционного максимума красителя переводит фотосенсибилизатор из основного электронного состояния на более высокий энергетический уровень (возбуждение), представляющий собой триплетное состояние.

Возбужденный фотосенсибилизатор быстро возвращается в основное состояние, причем в этом процессе происходит переход его энергии возбуждения на другие молекулы. При передаче этой энергии молекуле кислорода (реакция II типа) образуется атомарный кислород, который впоследствии взаимодействует с белками, нуклеиновыми кислотами и липидными мембранами (44). Если возбужденный фотосенсибилизатор передает энергию другим соединениям (реакция I типа), могут формироваться такие свободные радикалы как супероксид, гидроксил и другие (45). Эти высокоактивные молекулы вызывают повреждение клеток, в результате чего развивается апоптоз и/или некроз тканей. Клетки опухоли могут испытывать прямое воздействие, но также повреждению подвергаются и эндотелиальные клетки, выстилающие кровеносные сосуды, что приводит к формированию тромбозов. Фотодинамическое воздействие на ткани не зависит от температуры ткани-мишени, что отличает его от традиционного метода термальной фотокоагуляции или термальной фотокоагуляции с использованием красителей.

Факторы, оказывающие влияние на эффективность данного фотосенсибилизитора, многочисленны и зависят от его фотофизических и фотохимических свойств. Абсорбционный спектр фотосенсибилизатора определяет длину волны излучения, которая используется для ФДТ. Как правило, используемые длины волн соответствуют абсорбционному максимуму фотосенсибилизатора. Эффективная глубина пенетрации ФДТ зависит от длины волны светового потока и оптических свойств ткани.

Обычно, эффективная глубина пенетрации составляет 2-3 мм при длине волны излучения 630 нм и возрастает до 5-6 мм при ее увеличении от до 800 нм (46). Эти значения изменяются путем варьирования биологических и физических характеристик фотосенсибилизатора. В большинстве случаев фотосенсибилизаторы, абсорбирующие свет при более высоких длинах волн, оказываются самыми эффективными (47).

Другими важными аспектами действия фотосенсибилизаторов являются их метаболизм, рН и путь введения. В большинстве случаев офтальмологического применения фотосенсибилизаторы назначают внутривенно. Ключевая роль при ФДТ принадлежит способности фотосенсибилизатора локализоваться преимущественно в ткани-мишени, что приводит к ее повреждению при активации красителя светом и сводит к минимуму сопутствующее поражение окружающих тканей (48).

Внутриклеточная локализация фотосенсибилизаторов также может быть различной. Некоторые препараты повреждают главным образом плазматическую мембрану и митохондрии, а другие оказывают воздействие на ядро или лизосомы (49-54). Внутриклеточная локализация определяет механизм повреждения клетки. Так, митохондриальная локализация приводит в большинстве случаев к апоптозу, а не к некрозу, в то время как локализация в плазматической мембране или лизосомах, как правило, ведет к некрозу (55). Несмотря на имеющиеся данные о наличии прямого поражения опухолевых клеток, предполагается, что основным механизмом, инициирующим гибель опухоли, является окклюзия ее сосудов. Индуцируемое фотодинамическим воздействием поражение эндотелиальных клеток приводит к адгезии тромбоцитов и дегрануляции, в результате этого формируется стаз, аггрегация клеток крови и закупорка сосуда. После проведения ФДТ происходит выброс эйкозаноидов, включая тромбоксан и гистамин, а также фактора некроза опухолей, который может также вносить свой вклад в развитие окклюзии сосудов (56).

Для проведения ФДТ могут применяться разные источники света, от широкополосного света ламп накаливания или дуговых ламп до монохроматического света лазеров. Широкая полоса света может усиливать фотодинамический эффект при возбуждении вторичных абсорбционных пиков фотосенсибилизатора. Применение щелевых ламп для подачи лазерного света делает возможной пространственную очерченность процедуры и является предпочтительным для внутриглазного использования (57-59). Для определения селективности действия лазера в ФДТ важно знать его терапевтические параметры, а именно дозу облучения (Дж/см2) и плотность мощности (мВт/см2), которые определяют продолжительность воздействия. В доклинических и клинических исследованиях с использованием разных типов фотосенсибилизаторов в лечении глазной патологии наиболее часто применялась плотность мощности 600 мВт/см2 (60-63). Время облучения при проведении ФДТ и период времени от момента введения фотосенсибилизатора до воздействия света также имеют большое значение для селективности лечения. Офтальмология идеально подходит для демонстрации пространственной и временной локализации фотосенсибилизатора с помощью флюоресцентной ангиографии.

Используя стандартные фундус камеры и системы формирования изображения, а также применяя светофильтры, оптимизирующие абсорбцию и флюоресценцию фотосенсибилизатора, можно получить серию изображений глазного дна после введения препарата (64-67).

Сравнивая уровень флюоресценции и анализируя во времени изображения представляющих интерес тканей (сосудов сетчатки, хориоидальной неоваскуляризации и нормальной хориодеи), можно установить, находится ли фотосенсибилизатор в ХНВ в то время, когда он уже покинул сосуды сетчатки, проникает ли он за пределы ХНВ в субретинальное пространство. Таким образом, можно предопределить временное окно облучение в ходе ФДТ.

ФОТОСЕНСИБИЛИЗАТОРЫ В ОФТАЛЬМОЛОГИИ

Для изучения методики фотодинамической терапии in vitro и на моделях животных in vivo были использованы несколько крупных классов фотосенсибилизаторов:

1. Производные ксантена Бенгал розовый 2. Производные тетрапиррола Производное гематопорфирина (ПГП) Фотофрин (порфимер натрия/дигематопорфириновый эфир) Производное бензопорфирина (вертепорфин) Этиопурпурин олова Тексафирин лютеция АТХS10 (Na) 3. Хлорины и бактериохлорины Бактериохлорин a 4. Фталоцианины Сульфонированный фталоцианин хлороалюминия Фталоцианин цинка До настоящего времени в перечень фотосенсибилизаторов, тестировавшихся в клинических испытаниях в офтальмологии, вошли производное бензопорфирина (ПБП) или вертепорфин, этил этиопурпурин олова или пурлитин, Lu-Tex или тексафирин лютеция (37).

Такие производные порфирина, как ПГП и порфимер натрия (фотофрин), являются наиболее широко изучаемыми фотодинамическими препаратами (68). Фотодинамическая терапия с применением ПГП проводится с длиной волны света 630 нм с целью увеличения тканевой пенетрации и снижения уровня абсорбции других тканевых хроматофоров. Отрицательными свойствами данного препарата являются его небольшой абсорбционный пик на данной длине волны и продолжительная фотосенсибилизация кожи, длящаяся на протяжении одного и более месяцев после лечения. Порфимер натрия является частично очищенным компонентом ПГП, обладает большим действием и оказывает меньшее токсическое влияние на кожу, чем ПГП (69).

Применение порфимера натрия было одобрено в ряде стран для лечения некоторых форм рака у человека.

Хлорины, бактериохлорины и производные бензопорфирина, использование которых для ФДТ началось лишь недавно, являются производными порфирина более нового поколения и обладают рядом положительных свойств. Такие производные хлоринов, как моноаспартиловый хлорин е6 или Npe6 оказались эффективными фотосенсибилизаторами на моделях животных (62,70). Бактериохлорин – это производное хлорина с пиком абсорбции на 760 нм, обладает более высоким коэффициентом молярной абсорбции по сравнению с ПГП (71).

Вертепорфин представляет собой еще один модифицированный порфирин, абсорбционный максимум которого соответствует примерно 690 нм, и является фотоактивным in vivo. Это нетоксичная молекула хлоринового типа, включающая два равных пространственных изомера со сходным фармакологическим действием. Препарат быстро и селективно накапливается в эндотелии новообразованных сосудов и не накапливается в окружающих нормальных. Внутрь эндотелиальной клетки он попадает, связываясь с липопротеинами низкой плотности, путем пиноцитоза.

Вертепорфин быстро инактивируется и выводится из организма в течение 24 часов, не оказывая значимого токсического эффекта (72). Его использовали для лечения экспериментально полученных глазных опухолей и неоваскуляризации. В настоящее время он является единственным фотосенсибилизатором, применение которого допускается в офтальмологии (73).

Пурлитин, или этиопурпурин олова (SnET2), адсорбирующий на нм, также использовали для лечения экспериментальной ХНВ и изучали в ходе клинических испытаний при лечении неоваскулярной СМД (74).

ATX S10 (Na) является водорастворимым порфириновым соединением с периодом полувыведения из плазмы равным приблизительно 30 минутам.

Его действие анализировали в исследованиях экспериментальной ХНВ (75).

Фталоцианины – это еще один класс фотосенсибилизаторов, обладающих мощной абсорбцией с пиком на 675 нм (76,77). Центрально расположенные металлы, такие как цинк и алюминий, введены в их структуру для повышения устойчивости триплетного состояния фталоцианина и увеличения выхода атомарного кислорода. Растворимость фталоцианинов и их клеточная локализация определяются числом и зарядом их боковых цепей. Фталацианины обладают более высокой скоростью выведения и оказывают значительно меньшее токсическое дигематопорфириновый эфир (ДГЭ). Действие фталоцианинов изучалось на экспериментальных моделях глазных опухолей и неоваскуляризации глаза, но степень безопасности их применения у человека до настоящего времени не установлена (78-80).

Тексафирины являются синтетическими водорастворимыми макроциклическими соединениями с центрально расположенными ионами металлов. Тексафирин лютеция, абсорбирующий на 732 нм, является стабильным, чистым и водорастворимым соединением, причем быстро выводится из кожи и не вызывает ее фотосенсибилизации (81).

Эффективность тексафирин лютеция была продемонстрирована при обработке экспериментальных опухолей и атероматозных бляшек. Его действие изучалось также в испытаниях Фазы I, проводившихся с участием больных с метастатическими формами рака (82,83). ФДТ с применением Lu-Tex анализировали на экспериментальной ХНВ и в клинических испытаниях (84,85).

Фотосенсибилизирующими свойствами обладают производные ксантена (86,87). Бенгал розовый представляет собой производное флюоресцеина, в которое введены атомы галогена, и характеризуется повышенным уровнем выхода атомарного кислорода (88-90).

ЭКСПЕРИМЕНТАЛЬНОЕ И КЛИНИЧЕСКОЕ ПРИМЕНЕНИЕ

ФОТОДИНАМИЧЕСКОЙ ТЕРАПИИ В ОФТАЛЬМОЛОГИИ

ОПУХОЛИ ГЛАЗА

Описано несколько случаев применения ФДТ для лечения меланомы радужной оболочки и цилиарного тела у человека. В 1984 году Tse в совместном эксперименте с коллегами (91) воздействовал на две меланомы цилиарного тела и одну меланому радужной оболочки ПГП с использованием транскорнеального красного излучения (ксеноновая дуговая лампа или аргоновый лазер с длиной волны 630 нм) с низкой плотностью мощности (от 18 до 200 мВт/см2) и высокой дозой облучения (1,400 Дж/см2 и 2,566 Дж/см2). При гистологическом изучении было продемонстрировано наличие неполного некроза обеих опухолей. При обработке световым потоком с более высокой плотностью, глубина некротических изменений была большей. Для меланомы радужной оболочки был использован поток с дозой 1,080 Дж/см2, в результате этого был получен полноценный клинический ответ. Sery с сотрудниками (92) вводил больному с диффузной мультиузловой меланомой радужной оболочки ПГП в дозе 2.5 мг/кг и применяли красный свет с длиной волны 632 нм с использованием оптико-волоконного зонда, но ответа не получили. Вариабельные результаты были также описаны и для комбинированного применения фотодинамического и фототермального подходов (69,93).

При использовании ФДТ в лечении меланом радужной оболочки и цилиарного тела человека были отмечены такие осложнения, как неоваскуляризация радужной оболочки и развитие неоваскулярной глаукомы. Подобные изменения также могут возникать и при применении других способов лечения (91,94). При использовании световых потоков высокой плотности и высоких концентраций фотосенсибилизаторов возможно также возникновение тяжелых увеитов, которые могут развиваться в результате внезапного и обширного некроза неопластических тканей (69,80). Эти осложнения можно свести к минимуму при использовании в лечении крупных опухолей множественных терапевтических сессий.

Оценивая результаты проводившихся на человеке испытаний, исследователи не смогли дать ясного заключения в отношении эффективности ФДТ и лишь продемонстрировали необходимость в более глубоком понимании принципов световой дозиметрии и других факторов, лимитирующих фотодинамическое воздействие. На этом основании продолжилось изучение ФДТ на моделях животных. Самой простой моделью опухоли является меланома у зеленого хомяка. Клетки меланомы зеленого хомяка выращивают в культуре и вводят в переднюю глазную камеру кролика (95-99). Опухолевые узлы быстро пролиферируют, заполняя переднюю камеру, и, в отсутствии лечения, в конечном итоге приводят к перфорации глаза. Фотосенсибилизатор вводили внутривенно, а опухоли переднего глазного сегмента обрабатывали лазером с применением оптических волокон или щелевых ламп.

Результаты исследований, проводившихся на модели меланомы зеленого хомяка с применением ПГП и ДГЭ, не показали значимых изменений опухолей, поверхностных геморрагий и сосудистой окклюзии.

Было отмечено возникновение воспаления в передней камере, а флюоресцентная ангиография (ФА) продемонстрировала окклюзию опухолевых сосудов (97). При гистопатологическом изучении был выявлен лишь частичный некроз опухоли, сходный по форме с таковым, описанным у больных (99). Полный некроз был получен на мелких опухолях, размеры которых не превышали 4 мм в высоту, с использованием ПГП в дозе 2.5 мг/кг с дозой светового потока 102 Дж/см или выше (плотность облучения: 71 мВт/см2) (96,98). Работа на данной модели с высокими дозами ПГП (от 7.5 до 10 мг/кг) или с высокими энергетическими уровнями, превышавшими 180 Дж/см2, приводила к развитию неприемлемого токсического эффекта, проявляющегося отеком роговицы и конъюнктивы глаза и развитием воспаления и кровотечений (96). Результаты гистологического изучения глаз после проведения фототерапии с использованием ПГП позволили предположить, что основным механизмом формирования некроза опухоли является закупорка кровеносных сосудов, несмотря на то, что также было описано и прямое воздействие ФДТ на опухоли (100).

Эта же модель была использована для изучения эффективности ФДТ с применением нового поколения фотосенсибилизаторов, а именно хлороалюминиевого сульфонированного фталоцианина (CASPc) и монокислотного производного бензопорфирина (МК-ПБП). Panagopoulos с коллегами проводили ФДТ через 24 часа после внутривенного введения CASPc в дозе 5 мг/кг с использованием красного света с длиной волны 675 нм при нетермальных плотностях мощности (от 63 до 216 мВт/ см2).

После обработки только светом или только препаратом опухоли продолжали расти. На 4 глазах, обработанных световым потоком в 3 – Дж/ см2 (от 10 до 48 мВт/ см2) после внутривенного введения CASPc, было продемонстрировано обратное развитие опухолей после остановки их роста. В глазах, получивших 20 Дж/ см2 или более, отмечена преимущественная остановка роста, подтвержденная гистологически. В тех случаях, когда были использованы максимальные дозы облучения (от 57 до 60 Дж/ см2) или очень высокие дозы CASPc (от 16 до 30 мг/кг), также выявлялась преимущественная остановка роста, но развивались отек роговицы, гифемы и тяжелые воспалительные реакции переднего сегмента.

В других экспериментах использовали ту же модель для проведения ФДТ с применением МК-ПБП, предварительно конъюгированного с липопротеином низкой плотности (101). После облучения красным светом с длиной волны 692 нм с использованием энергии в 100 Дж/ см2 (150 мВТ/ см2) некроз опухолей передней камеры глаза определяли гистопатологически. По всей вероятности, фотодинамическая терапия с применением таких фотосенсибилизаторов нового поколения, как CASPc и МК-ПБП, является эффективной при обработке меланом зеленого хомяка, но известно, что такая модель имеет ряд ограничений. Физическое поражение прилежащих структур роговицы и хрусталика, наблюдающееся на этой модели, отчасти может быть связано с неестественным положением опухолей, а также являться следствием воздействия ФДТ.

Опухолевые клетки, неразличимые во время проведения ФДТ, остаются вне зоны обработки и продолжают расти, препятствуя продолжительному наблюдению пораженных глаз. Модель зеленого хомяка не считается оптимальной, так как она не имеет пигментации и, как следствие, более восприимчива к поражению, обусловленному ФДТ. Подобной критике смогут противостоять новые модели пигментированной меланомы.

В нескольких отчетах описано лечение хориоидальной меланомы человека с помощью ФДТ. Tse с коллегами (91) вводил троим больным с хориоидальной меланомой ПГП в дозе 3 – 5 мг/кг и транскорнеально воздействовал на патологическую ткань красным светом ксеноновой дуговой лампы или аргоновым лазером (630 нм). У двух пациентов, получавших дозу облучения от 64 до 850 Дж/см2, гистопатологического подтверждения некроза опухоли выявлено не было. У третьего больного, получавшего поток с более высокой плотностью (2160 Дж/см2), зафиксировано наличие ограниченного некроза опухоли на глубину 2- мм. В период между 1982 и 1985 годами Bruce (102,103) вводил больным с хориоидальной меланомой ПГП в дозе 2.5 мг/кг, после чего через 72 часа транскорнеально и транссклерально воздействовал красным светом с длиной волны 630 нм (от 200 до 6,800 Дж/см2), источником которого был аргоновый лазер. Фотосенсибилизация кожи, хемоз, воспаление радужки и значительное снижение зрения отмечались у всех 24 больных. В последующем улучшение зрения наблюдалось в глазах, где опухоль была удалена от желтого пятна более чем на 4 мм. Из осложнений реже встречались экссудативная отслойка сетчатки, витреит и отслоение хориоидеи. Несмотря на то, что пациенты с опухолями малого и среднего размера дали лучший ответ, четких выводов в отношении числа излеченных больных сделано не было (103).

Murphree с коллегами (104) семи больным с хориоидальной меланомой применяли ПГП в дозе в 2,5 мг/кг и транскорнеальное и транссклеральное облучение красным светом. Им удалось получить лишь один полный ответ у больного с беспигментной меланомой после двух сеансов лечения. Позже Favilla с коллегами (105) вводили девятнадцати пациентам с хориоидальной меланомой ПГП в дозе от 5 до 7,5 мг/кг и применяли транспупиллярное лазерное облучение с длиной волны 620 – 630 нм. Трое больных также получили транссклеральное облучение. Все опухоли были менее 10 мм в высоту. Полный ответ был зарегистрирован у 6 больных, имевших слабо или умеренно пигментированные опухоли.

Отсутствие регрессии было отмечено у 8 пациентов, пятеро из которых имели опухоли темной пигментации.

Эти клинические исследования указывают на то, что можно ожидать хороший ответ на применение ФДТ при наличии меланомы небольшого размера, непигментированной или слабо пигментированной опухоли.

Меланомы большого размера являются невосприимчивыми к данному виду лечения. Неравномерность облучения крупных опухолей может также усугубляться абсорбционными характеристиками таких хромофоров, как меланин или гемоглобин (92). Другими возможными лимитирующими факторами являются выбор фотосенсибилизатора, низкая или неравномерная концентрация кислорода в опухоли, а также неравномерное распределение или разрушение фотосенсибилизатора.

Результаты этих исследований демонстрируют, что в случаях хориоидальной меланомы не существует достаточно веских подтверждений большей эффективности ФДТ в сравнении с такими известными методами лечения, как брахитерапия и радиотерапия (106).

Некоторые исследователи обрабатывали экспериментально полученную хориоидальную меланому фотосенсибилизаторами нового поколения (107-111). В ходе экспериментов в супрахориоидальное пространство вводили опухолевые клетки меланомы зеленого хомяка.

Мониторинг роста проводили с помощью непрямой офтальмоскопии, фотографирования дна и, в некоторых случаях, эхографии и анализа цветных допплеровских изображений (109). После этого клетки опухоли обрабатывали лазерным светом. Schmidt-Erfurth с коллегами (107) обрабатывал экспериментально полученную надсосудистую меланому зеленого хомяка МК-ПГП (2 мг/кг) с последующим облучением красным светом длиной волны 692 нм. Полный некроз опухолей подтверждался гистологически после дозы облучения в 100Дж/см2. Среди осложнений отмечались транзиторные воспалительные реакции стекловидного тела и самопроизвольно разрешающиеся отслоения сетчатки, большинство из которых исчезли в течение 48 часов.

Для изучения эффективности ФДТ в отношении пигментированных опухолей Hu с коллегами (112) разработал модель пигментированной хориоидальной меланомы у кроликов. Кроликам с опухолью вводили CASPc 5 мг/кг, а через 24 часа новообразования облучали красным светом с длиной волны 675 нм. Полную остановку роста опухолей получали при дозе излучения в 35-60 Дж/см2 (108). При лечении экспериментальной пигментированной хориоидальной меланомы эффективной оказалась также фотодинамическая терапия с использованием ПБП (111). При обработке ФДТ 18 глаз кроликов с помощью ПБП, регрессия наблюдалась во всех опухолях при дозе облучения в 60 Дж/см2. При гистологическом исследовании было выявлено острое поражение сосудов по всей толщине опухоли (вплоть до 4,6 мм) (113). Результаты, полученные в этих экспериментальных исследованиях, позволяют предполагать, что технология ФДТ с использованием новых фотосенсибилизирующих агентов и модифицированные стратегии лечения являются многообещающими в отношении лечения хориоидальной меланомы человека.

Несколько исследователей предпринимали попытки лечения больных с ретинобластомой с применением ФДТ. Murphree с коллегами (104) подвергал шестерых больных с рецидивирующей ретинобластомой воздействию ПГП и красного света субтермального порога с длиной волны 630 нм. Несмотря на исходное присутствие ответа, рецидивирование опухолевого роста отмечалось у всех шести пациентов.

Ohnishi в совместном эксперименте с исследователями (114) проводил ФДТ с использованием ПГП в дозах 2.5 и 5 мг/кг и аргонового лазера (от 488 до 514.5 нм) пятерым детям с ретинобластомой, четверо из которых ранее получали сеансы ионизирующей радиационной терапии. В случае, когда применение ФДТ было первичным, введение ПГП в дозе 5 мг/кг (300 мВт/см2, 270 Дж/см2) вызвало ангионекроз, тромбообразование и гибель опухолевых клеток на глубину 6мм. Среди осложнений у пяти больных отмечалось развитие хориоидальных геморрагий и тракционной отслойки сетчатки. Применяя тот же подход, Murphree (115) успешно вылечил двух больных с рецидивирующей ретинобластомой, проводя после введения ПГП фотокоагуляцию длинноволновым аргоновым зеленым лазером. Несмотря на то, что существует клиническое подтверждение эффективности использования ФДТ для лечения ретинобластомы, эту технологию, по всей видимости, не следует применять на глазах с прорастанием опухоли в стекловидное тело из-за отсутствия в этих участках опухолевых сосудов, что затрудняет доставку фотосенсибилизатора (116).

При изучении фотодинамической терапии на моделях животных с ретинобластомой получены хорошие результаты с полным некрозом опухоли. Однако используемые в этих экспериментах высокие дозы фотосенсибилизаторов могут вызывать такие осложнения, как отек сетчатки, отслоение и кровоточивость хориоидеи (116-119). В ожидании последующих публикаций вопрос о возможности лечения ретинобластомы человека с использованием ФДТ в настоящее время находится в состоянии изучения.

ГЛАЗНАЯ НЕОВАСКУЛЯРИЗАЦИЯ

патологической неоваскуляризации впервые была отмечена в ходе Фотосенсибилизирующий краситель порфирин преимущественно локализуется в неоваскулярной ткани опухоли, а поражение опухоли при использовании ФДТ происходит вторично вследствие окклюзии сосудов.

Скорость формирования тромбоза сосудов в глазу прямо зависит от интенсивности облучения, дозы фотосенсибилизатора и концентрации кислорода (88-90). Способность ФДТ вызывать селективную закупорку сети глазной неоваскуляризации с минимальным риском поражения других структур изучалась в ряде экспериментальных исследований, а впоследствии и в ходе клинических испытаний при неоваскулярной макулодистрофии.

Экспериментально полученную неоваскуляризацию роговицы, индуцированную интрастромальным введением интерлейкина-2, подвергали ФДТ с применением ДГЭ и облучением светом с длиной волны 514 нм через 72 часа после введения красителя (120). Было зарегистрировано значительное снижение уровня неоваскуляризации роговицы, которое осложнялось блефаритами и повреждением радужки.

Копаевой В.Г. и Андреевым Ю.В. с соавт в 1992-93 г.г. была разработана методика фотохимической деструкции экпериментально индуцированной неоваскуляризации роговицы с использованием отечественного фотосенсибилизатора, производного гематопорфирина.

Выраженная кожная фототоксичность, технические сложности локального введения ФС, повреждающее действие лазерного облучения на фоторецепторы сетчатки при облучении роговицы не позволили методу получить клиническое применение.

Pallikaris с коллегами (121,122) обрабатывал полученную экспериментально неоваскуляризацию роговицы, вызванную наложением шелковых швов в глазах кроликов, фталоционином и светом с длиной волны 675 нм. Новообразованные сосуды тромбировались в течение первых нескольких дней после проведения ФДТ, что подтверждалось гистологически. Однако некоторые более крупные сосуды оставались открытыми и на 20 день после проведения процедуры. В некоторых случаях отмечено тромбообразование в нормальных сосудах радужной оболочки. Поврежденные сосуды радужки восстанавливались в течение месяца после проведения ФДТ. В ходе дополнительных исследований было продемонстрировано, что окклюзия корнеальной неоваскуляризации достигалась более эффективно под воздействием возрастающих доз фталоцианина и раннего облучения после введения препарата (122).

Используя локально вводимый ATX-S10 (Na), Gohto с коллегами проводил обработку экспериментальных моделей неоваскуляризации с облучением через 20 минут после введения препарата (123). Им удалось показать эффективность окклюзии при внутривенном способе назначения фотосенсибилизатора (124). Группа исследователей Schmidt-Erfurth использовала вертепорфиновую ФДТ для получения окклюзии в экспериментальной неоваскуляризации роговицы. Более благоприятные результаты им удалось получить при проведении облучения через 60 – минут после назначения препарата (125). Клиническое применение ФДТ для лечения неоваскуляризации роговицы не описано.

Фотодинамическая терапия успешно применялась для воздействия на экспериментально полученную неоваскуляризацию радужки.

Экспериментальную неоваскуляризацию радужки можно получить у приматов путем фототермальной или термальной окклюзии крупных ретинальных вен, приводящей к ретинальной ишемии и выбросу VEGF (126,127). Используя эту модель, Packer с соавторами провел ФДТ при неоваскуляризации радужки с применением ПГП (3 мг/кг) и красного света 675 нм (200 мВт/см2, 540 Дж/см2) (128). Через двадцать четыре часа после сеанса ФДТ отмечалось значительное снижение интенсивности флюоресцентного окрашивания радужной оболочки, наблюдаемого при ангиографии, которое, однако, сопровождалось развитием выраженной воспалительной реакции в передней камере. Позже неоваскуляризация радужки появилась вновь в одном из глаз, который впоследствии подвергли повторной обработке. Используя сходную модель, Miller с коллегами подвергал экспериментально полученную неоваскуляризацию радужки обработке путем внутривенного введения CASPc в дозах от 0. до 1.0 мг/кг и воздействия красного лазерного облучения (200 мВт/см2, от 34 до 100 Дж/см2). Ему удалось выявить тромботическую закупорку неоваскуляризации радужной оболочки уже через один час после обработки (79). Патологические сосуды радужки проявились снова в одном глазу через семь дней, но подтверждения восстановления кровотока в обработанных с помощью ФДТ сосудах выявлено не было. После лечения имели место незначительная реакция в передней камере и транзиторный подъем внутриглазного давления. Экспериментально полученная неоваскуляризация радужной оболочки также эффективно излечивалась с помощью ФДТ с применением вертепорфина и света с длиной волны 689 нм (129). Воздействие ФДТ в случаях неоваскуляризации радужки может приобрести роль дополнительной терапии в комбинации со стандартной процедурой воздействия на сетчатку при посттромботических состояниях. В одной из публикаций были описаны предварительные данные первичного клинического испытания ФДТ с использованием вертепорфина у больных с неоваскуляризацией радужной оболочки. Окклюзию новообразованных сосудов радужки удалось получить при проведении ФДТ без повреждения нормальных сосудов радужки или других нормальных тканей (130).

Было показано, что ФДТ является относительно селективным способом лечения ХНВ. Ее эффективность зависимосит от характеристик фотосенсибилизатора, дозы препарата и времени, прошедшего от момента введения препарата до воздействия светом. В ходе предварительных исследований изучались процессы окклюзии нормальных сосудов хориоидеи. Nanda с коллегами выполнил исследование, в котором применял ФДТ в комбинации с бенгал розовым для получения окклюзии сердцевидного луча и хориоидальных сосудов у кроликов (88). Бенгал розовый использовался в концентрации 10 мг/кг, через 1-2 минуты после его введения проводилось облучение с использованием ксеноновой дуговой лампы в 300 Вт с фильтрами длиной волны 550 + 10 нм.

Мощность дозы составила 1,695 Дж/см2 и 125 мВт/см2 (на роговице).

В 1987 году Thomas и Langhofer изучали воздействие ФДТ на экспериментально полученную ХНВ, используя дигематопорфириновый эфир (ДГЭ) (131). Они применяли ДГЭ в концентрации 8 мг/кг и облучение через 12 часов после его введения единичным импульсом аргонового зеленого света 514 нм с мощностью в 100 мВт в течение 0. секунды. Была зафиксирована окклюзия ХНВ, но параметры лазерного воздействия соответствовали термальной лазерной коагуляции ( Вт/см2). Ben и Hevda Miller для получения экспериментальной окклюзии ХНВ у мартышек использовали бенгал розовый (57). Они вводили мг/кг бенгал розового и облучали сетчатку посредством щелевой лампы с фильтрами для выделения длин волн от 510 до 750 нм, с плотностью облучения в 12.7 мВт/см2 и дозе облучения от 1.5 до 7.6 Дж/см2. Они показали, что окклюзия ХНВ с незначительным поражением сосудов радужки возникает при облучении через 40 – 70 минут после введения бенгал розового. Исследователи Kliman обрабатывали экспериментально полученную ХНВ у мартышек путем проведения ФДТ с использованием CASPc. Окклюзия сосудов ХНВ достигалась с использованием CASPc в концентрации 0.5 мг/кг и облучением светом длиной волны 675 нм через 5-30 минут после его введения при 283 мВт/ см2 и 34 Дж/ см2. Было отмечено возникновение ретинальных кровотечений после обработки. На основании этого можно полагать, что на сосуды сетчатки было оказано неселективное влияние (78).

Обнадеживающие результаты получены в экспериментальных исследованиях с использованием соединений группы хлорина в лечении ХНВ. Тахчиди Х.П. с коллегами проводили испытание отечественного препарата «Фотодитазин» (бис-N-метилглюкамоновая соль хлорина e6) на кроликах породы шиншилла. При дозе фотосенсибилизатора 0,8 – 1, мг/кг веса и плотности энергии лазерного излучения (662 нм) свыше Дж/см2 удалось добиться селективной облитерации лазериндуцированной ХНВ у экспериментальных животных (132-134).

Воронцов Г.Н. с коллегами выполняли фотодинамическую терапию ХНВ у кроликов с отечественным препаратом «Фотосенс» (группа фтороаллюминиевых сульфированных фталоцианинов; CAPSc). При использовании фотосенсибилизатора в дозе 0,3 мг/кг была достигнута избирательная окклюзия новообразованных сосудов при облучении патологического очага лазером с длиной волны 675 нм при плотности мощности 500 мВт/см2, световой дозе 150 Дж/см2, экспозиции 5 минут.

Препарат полностью выводился из организма животных за 8 дней (135).

Все эти и другие исследователи отметили ценность применения ФДТ при неоваскулярной форме СМД. Было указано, что без данных о селективности воздействия ФДТ не будет иметь каких-либо клинических преимуществ по сравнению с термической фотокоагуляцией.

Фотосенсибилизаторы имеют ограничения при клиническом использовании. Производное гематопорфирина является неочищенным соединением, чем усиливает вариабельность эффектов лечения, вызывает продолжительную фотосенсибилизацию кожи, а также имеет поглощение на более длинных волнах, что обеспечивает более высокий уровень пенетрации тканей. CASPc также является неочищенным препаратом, который, по аналогии с бенгал розовым, обладает потенциалом для индукции системного токсического воздействия. Группа исследователей Miller продемонстрировала относительно селективную окклюзию патологических сосудов в экспериментальной ХНВ с использованием ФДТ в сочетании с вертепорфином. Эти исследования впоследствии были доведены до клинических испытаний, с дальнейшим выходом в клиническую практику. Было также показано, что фотодинамическая терапия экспериментальной ХНВ является столь же эффективной при использовании тексафирина лютеция, ATX S10 (Na) и пурлитина. Как пурлитин, так и лютеция тексафирин последовательно изучались в ходе клинических испытаний.

Ранние исследования применения ФДТ в офтальмологии были ограничены доступным набором фотосенсибилизаторов. В перечень фотосенсибилизаторов, особенно тщательно изучавшихся с позиции офтальмологического применения, входят вертепорфин, пурлитин и LuTex. Их исследование приводилось как в экспериментальных моделях на животных, так и в ходе клинических испытаний ФДТ. Вертепорфин был разрешен в США и за их пределами для применения в клинической практике в 2000 году. К настоящему моменту он остается единственным фотосенсибилизатором, использование которого допускается в офтальмологии. Этот препарат одобрен для лечения ХНВ при СМД и других нозологиях. Опубликован ряд работ об успешном использовании ФДТ с применением вертепорфина для лечения хориоидальных гемангиом, ретинальных ангиом и центральной серозной хориоретинопатии. В перечень дополнительных показаний к его применению входят неоваскулярные глаукомы, пролиферативные ретинопатии и опухоли, включая хориоидальную меланому и ретинобластому. Таким образом, для углубления нашего понимания клеточных механизмов и улучшения результатов клинического лечения, необходимо проведение дополнительных исследований.

ФОТОДИНАМИЧЕСКАЯ ТЕРАПИЯ С ВИЗУДИНОМ В ЛЕЧЕНИИ

ХОРИОИДАЛЬНОЙ НЕОВАСКУЛЯРИЗАЦИИ ПРИ

МАКУЛЯРНОЙ ПАТОЛОГИИ



Pages:   || 2 |
Похожие работы:

«ВОССТАНОВИТЕЛЬНАЯ МЕДИЦИНА Монография Том II Под редакцией А.А. Хадарцева, С.Н. Гонтарева, С.В. Крюковой Тула – Белгород, 2010 УДК 616-003.9 Восстановительная медицина: Монография / Под ред. А.А. Хадарцева, С.Н. Гонтарева, С.В. Крюковой.– Тула: Изд-во ТулГУ – Белгород: ЗАО Белгородская областная типография, 2010.– Т. II.– 262 с. Авторский коллектив: Акад. РАМН, д.м.н., проф. Зилов В.Г.; Засл. деятель науки РФ, д.м.н., проф. Хадарцев А.А.; Засл. деятель науки РФ, д.б.н., д.физ.-мат.н., проф....»

«ЕСТЕСТВЕННОНАУЧНАЯ КАРТИНА МИРА (Часть 1) ОТЕЧЕСТВО 2011 УДК 520/524 ББК 22.65 И 90 Печатается по рекомендации Ученого совета Астрономической обсерватории им. В.П. Энгельгардта Научный редактор – акад. АН РТ, д-р физ.-мат. наук, проф Н.А. Сахибуллин Рецензенты: д-р. физ.-мат. наук, проф. Н.Г. Ризванов, д-р физ.-мат. наук, проф. А.И. Нефедьева Коллектив авторов: Нефедьев Ю.А., д-р физ.-мат. наук, проф., Боровских В.С., канд. физ.-мат. наук, доц., Галеев А.И., канд. физ.-мат. наук, Камалеева...»

«Светлана Замлелова Трансгрессия мифа об Иуде Искариоте в XX-XXI вв. Москва – 2014 УДК 1:2 ББК 87:86.2 З-26 Рецензенты: В.С. Глаголев - д. филос. н., профессор; К.И. Никонов - д. филос. н., профессор. Замлелова С.Г. З-26 Приблизился предающий. : Трансгрессия мифа об Иуде Искариоте в XX-XXI вв. : моногр. / С.Г. Замлелова. – М., 2014. – 272 с. ISBN 978-5-4465-0327-8 Монография Замлеловой Светланы Георгиевны, посвящена философскому осмыслению трансгрессии христианского мифа об Иуде Искариоте в...»

«Н.П. ЖУКОВ, Н.Ф. МАЙНИКОВА МНОГОМОДЕЛЬНЫЕ МЕТОДЫ И СРЕДСТВА НЕРАЗРУШАЮЩЕГО КОНТРОЛЯ ТЕПЛОФИЗИЧЕСКИХ СВОЙСТВ МАТЕРИАЛОВ И ИЗДЕЛИЙ МОСКВА ИЗДАТЕЛЬСТВО МАШИНОСТРОЕНИЕ-1 2004 УДК 620.179.1.05:691:658.562.4 ББК 31.312.06 Ж85 Рецензент Заслуженный деятель науки РФ, академик РАЕН, доктор физико-математических наук, профессор Э.М. Карташов Жуков Н.П., Майникова Н.Ф. Ж85 Многомодельные методы и средства неразрушающего контроля теплофизических свойств материалов и изделий. М.: Издательство...»

«Издательство Текст Краснодар, 2013 г. УДК 281.9 ББК 86.372 Э 36 Рекомендовано к публикации Издательским Советом Русской Православной Церкви ИС 13-304-0347 Книга издана на средства Екатеринодарской и Кубанской епархии, а также на личные пожертвования. Текст книги печатается по изданию: Учение древней Церкви о собственности и милостыне. Киев, 1910. Предисловие: Сомин Н. В. Экземплярский, Василий Ильич. Э 36 Учение древней Церкви о собственности и милостыне / В. И. Экземплярский. — Краснодар:...»

«Министерство образования и науки, молодежи и спорта Украины Государственное учреждение „Луганский национальный университет имени Тараса Шевченко” ЛИНГВОКОНЦЕПТОЛОГИЯ: ПЕРСПЕКТИВНЫЕ НАПРАВЛЕНИЯ Монография Луганск ГУ „ЛНУ имени Тараса Шевченко” 2013 1 УДК 81’1 ББК 8100 Л59 Авторский коллектив: Левицкий А. Э., доктор филологических наук, профессор; Потапенко С. И., доктор филологических наук, профессор; Воробьева О. П., доктор филологических наук, профессор и др. Рецензенты: доктор филологических...»

«АКАДЕМИЯ НАУК СССР ТРУДЫ ПАЛЕОНТОЛОГИЧЕСКОГО ИНСТИТУТА · Поздне­ мезозойские· HaceKOMble Восточного Забайкалья ТОМ 239 OCHOIIOHЬl 11 году 1932 Ответственный редактор доктор биологических наук А.П. РАСНИЦЫН МОСКВА НАУКА 1990 УДК 565.7:551.762/3 (57J.55) 1990.Позднемезозойские насекомые Восточного Забайкалья. М.: Наука, 223 с. -(Тр. ПИНАНСССР; Т. 239). - ISBN 5-02-004697-3 Монография содержит описания. ' ископаемых насекомых (поденки, полужесткокрылые, жуки, вислокрылки, верблюдки,'...»

«Барановский А.В. Механизмы экологической сегрегации домового и полевого воробьев Рязань, 2010 0 УДК 581.145:581.162 ББК Барановский А.В. Механизмы экологической сегрегации домового и полевого воробьев. Монография. – Рязань. 2010. - 192 с. ISBN - 978-5-904221-09-6 В монографии обобщены данные многолетних исследований автора, посвященных экологии и поведению домового и полевого воробьев рассмотрены актуальные вопросы питания, пространственного распределения, динамики численности, биоценотических...»

«Министерство образования и науки РФ ГОУ ВПО Сибирская государственная автомобильно-дорожная акадения (СибАДИ) Е.В. Цупикова ЛИНГВОМЕТОДИЧЕСКАЯ СИСТЕМА РАЗВИТИЯ РЕЧИ И МЫШЛЕНИЯ УЧАЩИХСЯ ВЫСШЕЙ ШКОЛЫ НА ОСНОВЕ СЕМАСИОЛОГИИ Монография Омск СибАДИ 2011 1 УДК 74.58 ББК 378 Ц86 Рецензенты: доктор филологических наук, профессор РУДН В.М. Шаклеин; кандидат педагогических наук, доцент кафедры русского языка Омского танкового института Е.В. Федяева Цупикова Е.В. Ц86 Лингвометодическая система развития...»

«МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСТИТЕТ ЭКОНОМИКИ, СТАТИСТИКИ И ИНФОРМАТИКИ (МЭСИ) КАФЕДРА УПРАВЛЕНИЯ ЧЕЛОВЕЧЕСКИМИ РЕСУРСАМИ КОЛЛЕКТИВНАЯ МОНОГРАФИЯ ИННОВАЦИОННЫЕ ТЕХНОЛОГИИ УПРАВЛЕНИЯ ЧЕЛОВЕЧЕСКИМИ РЕСУРСАМИ Москва, 2012 1 УДК 65.014 ББК 65.290-2 И 665 ИННОВАЦИОННЫЕ ТЕХНОЛОГИИ УПРАВЛЕНИЯ ЧЕЛОВЕЧЕСКИМИ РЕСУРСАМИ: коллективная монография / Под редакцией к.э.н. А.А. Корсаковой, д.с.н. Е.С. Яхонтовой. – М.: МЭСИ, 2012. – С. 230. В книге...»

«Министерство образования и науки Российской Федерации Амурский государственный университет Биробиджанский филиал РЕГИОНАЛЬНЫЕ ПРОЦЕССЫ СОВРЕМЕННОЙ РОССИИ Монография Ответственный редактор кандидат географических наук В. В. Сухомлинова Биробиджан 2012 УДК 31, 33, 502, 91, 908 ББК 60 : 26.8 : 28 Рецензенты: доктор экономических наук, профессор Е.Н. Чижова доктор социологических наук, профессор Н.С. Данакин доктор физико-математических наук, профессор Е.А. Ванина Региональные процессы современной...»

«Министерство здравоохранения Российской Федерации Тихоокеанский государственный медицинский университет В.А. Дубинкин А.А. Тушков Факторы агрессии и медицина катастроф Монография Владивосток Издательский дом Дальневосточного федерального университета 2013 1 УДК 327:614.8 ББК 66.4(0):68.69 Д79 Рецензенты: Куксов Г.М., начальник медико-санитарной части УФСБ России по Приморскому краю, полковник, кандидат медицинских наук; Партин А.П., главный врач Центра медицины катастроф Приморского края;...»

«Федеральное агентство по образованию Владивостокский государственный университет экономики и сервиса Н.В. ХИСАМУТДИНОВА ДАЛЬНЕВОСТОЧНАЯ ШКОЛА ИНЖЕНЕРОВ: К ИСТОРИИ ВЫСШЕГО ТЕХНИЧЕСКОГО ОБРАЗОВАНИЯ (1899–1990 гг.) Монография Владивосток Издательство ВГУЭС 2009 ББК 74.58 Х 73 Рецензенты: Г.П. Турмов, д-р техн. наук, президент ДВГТУ; Ю.В. Аргудяева, д-р ист. наук, зав. отделом Института истории, археологии и этнографии народов Дальнего Востока ДВО РАН Хисамутдинова, Н.В. Х 73 ДАЛЬНЕВОСТОЧНАЯ ШКОЛА...»

«. т. в Курман код экземпляра 301863 11111111111111111111111111111111 '1111111111111111111111 Национальная юриди еская академия Украины имени Ярослава Мудrого Т. В. Курман Правовое обеспечение хозяйственной деятельности государственных специализированных сельскохозяйственных предприятий Монография fi,.-f:с~г соР /С.::, ·.16 е.-г а tf', / ' с~~ t?~ );;-; Харьков - 2007 ББК 67.3 УДК349.42 Рекомеидоваио опубликованию учеиым советом Нацио11алыюй tc юридической академии Украипы имени Ярослава...»

«РОЛЬ НАУКИ И ОБРАЗОВАНИЯ В МОДЕРНИЗАЦИИ ЭКОНОМИКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ УНИВЕРСИТЕТ УПРАВЛЕНИЯ И ЭКОНОМИКИ Петрозаводский филиал Роль науки и обРазования в модеРнизации экономики России Коллективная монография Санкт-Петербург 2012 1 УДК 338.1 ББК 65.01.я 73 Р68 Рецензенты: а. м. цыпук, д. т. н., профессор, Петрозаводский государственный университет Г. б. козырева, д. э. н., доцент, Институт экономики Карельского научного центра РАН Редакционная коллегия: а. и. Шишкин, Г. в. Гиенко, с. в....»

«А.А. Вилков, А.А. Казаков Политические технологии формирования имиджей России и США в процессе информационно-коммуникационного взаимодействия (на материалах Российской газеты и Вашингтон Пост. 2007-2008 гг.) Под редакцией профессора Ю.П. Суслова Издательский центр Наука Саратов – 2010 2 УДК [316.334.3+316.772.4] (450+571+73) ББК 60.56 (2Рос)+60.56(7Сое) В 44 Вилков А.А., Казаков А.А. Политические технологии формирования имиджей России и США в процессе информационно-коммуникационного...»

«РОССИЙСКАЯ АКАДЕМИЯ НАУК И Н С Т И Т У Т Р У С С К О Г О Я З Ы К А им. В. В. В И Н О Г Р А Д О В А О. Н. Трубачев INDOARICA в Северном Причерноморье Реконструкция реликтов языка Этимологический словарь М О С К В А Н А У К А 1999 УДК 800/801 ББК81 Т77 Ответственные редакторы Л.А. Гиндин к И.Б. Еськова Трубачев О.Н. Indoarica в Северном Причерноморье. - М:: Наука. 1999. - 320 с. 1 8 Б ^ 5-02-011675-0 Монография раскрывает перед читателем реликты языка, этноса, культуры древнего южного региона и...»

«Ю. В. КУЛИКОВА ГАЛЛЬСКАЯ ИМП Е Р И Я ОТ ПОСТУМА ДО ТЕТРИКОВ Санкт-Петербург АЛЕТЕЙЯ 2012 У ДК 9 4 ( 3 7 ).0 7 ББК 6 3.3 (0 )3 2 К 90 Р ец ен зен ты : профессор, д.и.н. В.И.К узищ ин профессор, д.и.н. И.С.Ф илиппов Куликова Ю. В. К90 Галльская империя от П остума до Тетриков : м онография / Ю. В. Куликова. — С П б.: Алетейя, 2012. — 272 с. — (Серия Античная библиотека. И сследования). ISBN 978-5-91419-722-0 Монография посвящена одной из дискуссионных и почти не затронутой отечественной...»

«КОЛОМЕНСКИЙ ИНСТИТУТ (ФИЛИАЛ) МГОУ ИМЕНИ В.С. ЧЕРНОМЫРДИНА Вестник библиотеки’2013 Новые поступления Библиографический указатель Гуманитарные науки · Технические науки · Экономика и управление · Юриспруденция Коломна 2013 УДК 013 ББК 91 В 38 Вестник библиотеки’2013. Новые поступления: библиографический указатель / В 38 сост. Т. Ю. Крикунова. – Коломна: КИ (ф) МГОУ, 2013. – 23 с. В библиографическом указателе собраны записи об учебниках, монографиях и других документах, поступивших в фонд...»

«Д.А. ЮНГМЕЙСТЕР ФОРМИРОВАНИЕ КОМПЛЕКСОВ ГОРНЫХ МАШИН НА ОСНОВЕ МОРФОЛОГИЧЕСКОГО АНАЛИЗА Санкт-Петербург 2002 Министерство образования Российской Федерации Санкт-Петербургский государственный горный институтим. Г. В. Плеханова (технический университет) Д.А. ЮНГМЕЙСТЕР ФОРМИРОВАНИЕ КОМПЛЕКСОВ ГОРНЫХ МАШИН НА ОСНОВЕ МОРФОЛОГИЧЕСКОГО АНАЛИЗА Санкт-Петербург УДК 622. ББК 34. Ю Излагаются проблемы совершенствования...»






 
© 2013 www.diss.seluk.ru - «Бесплатная электронная библиотека - Авторефераты, Диссертации, Монографии, Методички, учебные программы»

Материалы этого сайта размещены для ознакомления, все права принадлежат их авторам.
Если Вы не согласны с тем, что Ваш материал размещён на этом сайте, пожалуйста, напишите нам, мы в течении 1-2 рабочих дней удалим его.