WWW.DISS.SELUK.RU

БЕСПЛАТНАЯ ЭЛЕКТРОННАЯ БИБЛИОТЕКА
(Авторефераты, диссертации, методички, учебные программы, монографии)

 

Pages:   || 2 | 3 | 4 | 5 |

«ГЕОЛОГИЯ Учебное пособие по курсу Науки о Земле для студентов, обучающихся по специальности 28020265 Инженерная защита окружающей среды Составитель В. А. Михеев Ульяновск 2009 УДК 55 (075) ...»

-- [ Страница 1 ] --

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ

Государственное образовательное учреждение высшего профессионального образования

«Ульяновский государственный технический университет»

ГЕОЛОГИЯ

Учебное пособие по курсу «Науки о Земле»

для студентов, обучающихся по специальности 28020265

«Инженерная защита окружающей среды»

Составитель В. А. Михеев Ульяновск 2009 УДК 55 (075) ББК 26.3 я7 Г 36 Рецензенты: заведующий кафедрой «Общая экология» экологического факультета Института медицины, экологии и физической культуры УлГУ доктор биологических наук, профессор В. Н. Горбачев; ведущий специалист-эксперт отдела геологического контроля и охраны недр Росприроднадзора по Ульяновской области кандидат биологических наук М. Е. Лоснов.

Утверждено редакционно-издательским отделом университета в качестве учебного пособия Г 36 Геология: учебное пособие по курсу «Науки о Земле» для студентов,обучающихся по специальности 28020265 «Инженерная защита окружающей среды» / сост. В. А.

Михеев - Ульяновск : УлГТУ, 2009. - 109 с.

ISBN 978 - 5 - 9795 - 0532 - Пособие составлено в соответствии с программой, рекомендованной Министерством образования России по дисциплине «Науки о Земле», и требованиями действующего Государственного образовательного стандарта по направлению «Инженерная защита окружающей среды». В пособии даны современные представления о происхождении и строении Земли, минералогии, эндогенным и экзогенным геологическим процессам, тектонике и геологической хронологии, а также экологическим функциям литосферы и последствиям антропогенного воздействия на литосферу. В заключении даны определения основных геологических терминов^используемых в данном пособии.

УДК 55 (075) ББК 26.3 м © Михеев В. А., составление 2009.

ISBN 978 - 5 - 9795 - 0532 - 9 © Оформление. УлГТУ,

ОГЛАВЛЕНИЕ

ВВЕДЕНИЕ

1.1. Геология как наука 1.2. Методы исследований и связь геологии с другими наукам 1.3. История развития геологии 1.1. Геология как наука Геология (греч. «гео» - Земля, «логос» - учение) комплекс наук о земной коре и более глубоких сферах Земли; в узком смысле слова - наука о составе, строении, движениях и истории развития земной коры и размещении в ней полезных ископаемых. Большинство прикладных и теоретических вопросов, решаемых геологией, связано с верхней частью земной коры, доступной непосредственному наблюдению.

Развитие поверхности Земли, происходит, как бы в борьбе двух сил, двух комплексов процессов - эндогенных и экзогенных. Первые из них стремятся расчленить рельеф, увеличить градиент гравитационного потенциала поверхности планеты. Вторые - наоборот, стремятся сгладить рельеф, разрушить возвышенности и заполнить низменности продуктами разрушения.





Основные объекты исследований — горные породы, в которых запечатлена геологическая летопись Земли, а также современные физические процессы и механизмы, действующие как на ее поверхности, так и в недрах, изучение которых позволяет понять, каким образом происходило развитие нашей планеты в прошлом.

Земля постоянно изменяется. Некоторые изменения происходят внезапно и весьма бурно (например, вулканические извержения, землетрясения или крупные наводнения), но чаще всего медленно (за столетие сносится или накапливается слой осадков мощностью не более 30 см). Такие перемены не заметны на протяжении жизни одного человека, но накоплены некоторые сведения об изменениях за продолжительный срок, а при помощи регулярных точных измерений фиксируются даже незначительные движения земной коры. Например, таким образом установлено, что территория вокруг Великих озер (США и Канада) и Ботнического залива (Швеция) в настоящее время поднимается, а восточное побережье Великобритании — опускается и затапливается.

Геологические дисциплины. Геология выделилась в самостоятельную науку в 18 в.

Современная геология подразделяется на ряд тесно взаимосвязанных отраслей. К ним относятся: геофизика, геохимия, историческая геология, минералогия, петрология, структурная геология, тектоника, стратиграфия, геоморфология, палеонтология, палеоэкология, геология полезных ископаемых. Существуют также несколько междисциплинарных областей исследований: морская геология, инженерная геология, гидрогеология, сельскохозяйственная геология и геология окружающей среды (экогеология). Геология тесно связана с такими науками, как гидродинамика, океанология, биология, физика и химия.

1.2. Методы исследований и связь геологии с другими науками Современная геология тесно связана с очень большим числом других наук, главным образом наук о Земле. Именно поэтому трудно установить точные границы геологии как науки и определить однозначно её предмет. Широкое применение при геологических исследованиях физических и химических методов способствовало бурному развитию таких пограничных дисциплин, как физика Земли и геохимия. Физика Земли изучает физические свойства Земли и её оболочек, а также происходящие в этих оболочках геологические процессы.

Геохимия рассматривает химический состав Земли и законы распространения и миграций в ней химических элементов. Геология не может обойтись без применения методов и выводов этих наук. В геохимии и физике Земли органически сливаются физические и химические приёмы исследования, с одной стороны, и геологические - с другой. Поэтому положение геохимии и физики Земли в системе наук о Земле является дискуссионным. Их рассматризико-географических наук (геоморфологией, климатологией, гидрологией, океанологией, гляциологией и др.), в задачи которых входит изучение рельефа земной поверхности, вод суши и Мирового океана, климатов Земли и других вопросов, касающихся строения, состава и развития географической оболочки. Для полного понимания истории Земли необходимо знать её начальное состояние; такой вопрос решает планетная космогония, т. е. раздел астрономии, изучающий проблему образования планет. В вопросах происхождения и развития органической жизни на Земле геология взаимосвязана с биологическими науками и прежде всего с палеонтологией. Знание биологических и биохимических процессов необходимо геологу для выяснения путей образования ряда горных пород и полезных ископаемых (нефти, угля и др.). Таким образом, весь комплекс наук, изучающих Землю, характеризуется многосторонней связью и взаимодействием. Геология использует данные этих наук для решения общих проблем развития планеты. Это позволяет некоторым исследователям отводить геологии ведущее место среди наук о Земле или даже понимать под геологией весь комплекс наук о Земле.





Геология включает ряд научных дисциплин, занимающихся исследованием и описанием Земли. Комплекс этих дисциплин пополняется по мере расширения исследований планеты за счёт их дифференциации и появления новых научных направлений, возникающих главным образом на стыке геологии с другими областями знания. Предмет большинства геологических дисциплин относится ко всем трём направлениям геологии (описательной, динамической и исторической). Этим объясняется тесная взаимосвязь геологических дисциплин и трудность их классификации, разделения на чётко разграниченные группы.

Общеприняты следующие группы геологических дисциплин: научные дисциплины, изучающие вещество и структуру (строение) земной коры; дисциплины, рассматривающие современные геологические процессы (динамическая геология); дисциплины, изучающие историческую последовательность геологических процессов (историческая геология); дисциплины прикладного значения; в особую группу выделяется геология отдельных областей и районов (региональная геология).

К первой группе относятся: минералогия (учение о минералах - природных устойчивых химических соединениях), петрография (учение о горных породах - структурновещественных ассоциациях минералов), структурная геология, изучающая формы залегания геологических тел, различные нарушения в залегании слоев - их изгибы, разрывы и т. п. Как одно из направлений минералогических исследований зародилась и долгое время развивалась кристаллография. Однако в последнее время изучение атомарного строения кристаллов сделало эту дисциплину в значительной мере физической.

Ко второй группе геологических дисциплин (динамическая геология) относится тектоника, изучающая движения земной коры и создаваемые ими структуры. Применительно к самым крупным структурам Земли — материкам и океанам - её называют часто геотектоникой, а тектонику неоген - антропогенового времени именуют неотектоникой. Обособленно стоит экспериментальная тектоника, которая занимается изучением тектонических процессов (например, образованием складок) на моделях. В эту же группу входят разделы минералогии и петрографии, изучающие процессы минерало- и породообразования, а также такие дисциплины, как вулканология, изучающая процессы вулканизма, сейсмогеология - наука о геологических процессах, сопровождающих землетрясения, и об использовании геологических данных для определения сейсмически опасных районов (сейсморайонирование) и геокриология, исследующая процессы, связанные с многолетнемёрзлыми породами.

К третьей группе относится историческая геология, восстанавливающая по следам, сохранившимся в осадочной оболочке Земли, события геологической истории и их последовательность. К этой же группе относится стратиграфия, занимающаяся изучением последовательности отложения слоёв горных пород в осадочной оболочке Земли, и палеогеография, которая на основании геологических данных занимается восстановлением физикогеографических условий прошлых геологических периодов.

Четвёртая группа (прикладная геология) включает: геологию полезных ископаемых;

гидрогеологию - науку о подземных водах; инженерную геологию, изучающую геологические условия строительства различных сооружений, и военную геологию, занимающуюся вопросами применения геологии в военном деле.

Особое место среди геологических дисциплин в смысле методики и задач занимает геология дна морей и океанов, или морская геология, которая успешно развивается в связи с возросшим интересом к использованию природных ресурсов морей и океанов.

Сказанное не исчерпывает перечня геологических дисциплин. Их дифференциация, а также сращивание со смежными дисциплинами ведут к появлению новых направлений. Например, поскольку методы исследования горных пород глубинного и осадочного происхождения оказались существенно различными, петрография разделилась на петрографию изверженных и петрографию осадочных пород, или литологию. Внедрение химических методов в изучение изверженных пород привело к возникновению петрохимии, а изучение деформаций внутри горных пород породило петротектонику.

Резко дифференцирована геология полезных ископаемых: геология нефти и газа, угля, металлогения, рассматривающая закономерности размещения рудных месторождений.

Применение в геологии новейших физических и химических методов послужило основой для появления таких новых специализаций, как тектонофизика, палеомагнетизм, экспериментальная физическая химия силикатов и др.

Вещественный состав Земли изучает комплекс наук: петрография изучает магматические и метаморфические горные породы; литология - осадочные породы; минералогия изучает природные химические соединения - минералы или отдельные химические элементы, слагающие горные породы; кристаллография и кристаллохимия изучают кристаллы и кристаллическое состояние минералов. Геохимия - обобщающая наука о вещественном составе литосферы.

Одним из направлений геологии является динамическая геология, изучающая разнообразные геологические процессы, формы рельефа земной поверхности. Выделяют две группы геологических процессов: эндогенные, или внутренние, связанные с тепловым воздействием Земли, возникающим в ее недрах, а также с гравитационной энергией, и экзогенные или внешние, вызывающие изменения в поверхностной и приповерхностной частях земной коры под действием лучистой энергии Солнца, силы тяжести, перемещения водных и воздушных масс, циркуляции воды, и деятельности живых организмов и продуктов их жизнедеятельности, антропогенной нагрузки и других факторов. Все экзогенные процессы тесно связаны с эндогенными. В сферу интересов динамической геологии входит геотектоника, изучающая структуру земной коры и литосферы, их эволюцию во времени и пространстве.

Историю геологического развития земной коры и Земли в целом изучает историческая геология, разделами которой являются стратиграфия, занимающаяся последовательностью формирования толщ горных пород, и палеогеография изучающая физико-географические обстановки на поверхности Земли в геологическом прошлом, палеотектоника, реконструирующая древние структурные элементы земной коры. Ископаемые органические останки изучает палеонтология.

Геологические методы исследований основаны главным образом на прямых полевых наблюдениях. Геологические исследования определённой территории начинаются с изучения и сопоставления горных пород, наблюдаемых на поверхности Земли в различных естественных обнажениях, а также в искусственных выработках (шурфах, карьерах, шахтах и др.).

Породы изучаются как в их природном залегании, так и путём отбора образцов, подвергаемых затем лабораторному исследованию. Обязательным элементом полевых работ геолога является геологическая съёмка, сопровождаемая составлением геологической карты и геологических профилей. На карте изображается распространение горных пород, указывается их генезис и возраст, а по мере надобности также состав пород и характер их залегания. Геологические профили отражают взаимное расположение слоев горных пород по вертикали на мысленно проведённых разрезах. Геологические карты и профили служат одним из основных документов, на основании которых делаются эмпирические обобщения и выводы, обосновываются поиски и разведка полезных ископаемых, оцениваются условия при возведении инженерных сооружений. Для уточнения данных геологической съёмки иногда прибегают к бурению скважин, которые позволяют извлечь на поверхность горные породы, залегающие на достаточной глубине.

Методы непосредственного изучения недр не дают возможности познать строение Земли глубже, чем на несколько километров (иногда до 20) от её поверхности. Поэтому даже для изучения земной коры, а тем более нижележащих геосфер, геология не обходится без помощи косвенных методов, разработанных другими науками, особенно без геохимических и геофизических методов. Очень часто применяется комплекс геологических, геофизических и геохимических методов.

В геологических исследованиях можно различить три основных направления. Задачей первого из них (описательная геология.) служит описание минералов, горных пород и их типов; изучение состава, формы, размеров, взаимоотношений, последовательности залегания и всех прочих вопросов, связанных с современным размещением и составом геологических тел (слоёв горных пород, гранитных массивов и др.). Второе направление (динамическая геология) заключается в изучении геологических процессов и их эволюции. К числу этих процессов относятся как внешние, по отношению к земной коре и более глубоким геосферам (разрушение горных пород, перенос и переотложение ветром, ледниками, наземными и подземными водами; накопление осадков на дне рек, озёр, морей, океанов и др.), так и внутренние (движения земной коры, землетрясения, извержения вулканов и сопутствующие им явления).

Геологические процессы изучаются не только в естественных условиях, но и экспериментально. Восстановление картины геологического прошлого Земли (историко-геологическая реконструкция) составляет сущность третьего направления геологических исследований (историческая геология). Задачи этого направления сводятся к изучению распространения и последовательности образования геологических напластований и других геологических тел, а также к установлению последовательности различных геологических процессов и событий, например процессов тектогенеза, метаморфизма, образования и разрушения залежей полезных ископаемых, трансгрессий и регрессий морей, смены эпох оледенений эпохами межледниковий и т. д. Все три направления геологии неразрывно связаны друг с другом, и исследование каждого геологического объекта, как и любой территории, ведётся со всех трёх точек зрения, хотя каждое направление является самостоятельным в смысле основных принципов и методов исследования.

Специфическая особенность геологических процессов состоит в том, что многие из них протекают на огромных территориях и продолжаются в течение миллионов и даже миллиардов лет; в этом заключается трудность их исследования. Чтобы понять геологические процессы прошлого, изучается весь комплекс результатов, оставленных ими в толщах пород:

особенности их состава, строения и залегания, формы рельефа земной поверхности и т. д.

При анализе историко-геологических данных принимается во внимание принцип последовательности напластования слоистых осадочных толщ, которые рассматриваются как страницы «каменной летописи» Земли; учитывается также необратимая эволюция органического мира, запечатлевшаяся в окаменевших остатках растительных и животных организмов, которые сохраняются в пластах осадочных пород (Палеонтологический метод изучения).

Каждой из эпох в развитии Земли соответствовали определённые растения и животные. Это послужило основой для установления относительного возраста толщ горных пород и позволило подразделить историю последних 600 млн лет жизни Земли на последовательные отрезки времени - эры, которые делятся на более мелкие единицы геологического времени периоды, эпохи и века (Геохронологический метод изучения). Исследования показывают, что 80% объёма осадочной оболочки Земли образуют самые древние, докембрийские, толщи, продолжительность образования которых составляет, по крайней мере, 6/7 всей известной геологической истории. Помимо относительного возраста определяется абсолютный, или радиометрический, возраст геологических тел. Метод его вычисления основан на законе постоянства скоростей радиоактивного распада; в качестве исходных данных берутся цифры относительного количества расщепляющего элемента и продуктов его распада в исследуемой горной породе или минерале. Этот метод имеет особенное значение для древнейших докембрийских толщ Земли, органические остатки представлены в них очень скудно.

Широко используется в геологии метод актуализма, согласно которому в сходных условиях геологические процессы идут сходным образом; поэтому, наблюдая современные процессы, можно судить о том, как шли аналогичные процессы в далёком прошлом. Современные процессы можно наблюдать в природе (например, деятельность рек) или создавать искусственно (подвергая, например, образцы горных пород действию высокой температуры и давления). Таким путём часто удаётся установить физико-географические и физикохимические условия, в которых отлагались древние слои, а для метаморфических горных пород и примерную глубину, на которой произошёл метаморфизм (изменение). Однако географическая и геологическая обстановка в жизни Земли необратимо менялась; поэтому, чем древнее изучаемые толщи, тем ограниченнее применение метода актуализма.

Разработка теоретических вопросов геологии тесно связана с одной из её крупнейших практических задач - прогнозом поиска и разведки полезных ископаемых и созданием минерально-сырьевой базы мирового хозяйства.

1. 3. История развития геологии Первые сведения геологического характера, (как и сведения о большинстве других наук) встречаются в трудах античных мыслителей: Пифагора, Аристотеля, Плиния, Страбона и др. Однако эти сведения касаются элементов динамической геологии: землетрясений, извержений вулканов, размывания гор, перемещения береговых линий морей и т. п. Только в средние века появляются попытки описания и классификации геологических тел, например описание минералов узбекским учёным Бируни и таджикским естествоиспытателем Ибн Синой (Авиценна). В эпоху Возрождения появились попытки обосновать природу ископаемых раковин как продукты жизнедеятельности вымерших организмов и доказать большую, по сравнению с библейскими представлениями, длительность истории Земли (Леонардо да Винчи в 1504-06, Дж. Фракасторо в 1517). Разработка представлений о смещении геологических слоёв и их первоначальном горизонтальном залегании принадлежит датчанину Н. Стено (1669), который впервые дал анализ геологического разреза (в Тоскане), объясняя его как последовательность геологических событий.

Слово «геология» появилось в печати в 15 в., но имело тогда совершенно другое значение, чем то, которое вкладывается в него теперь. Под геологией понимали весь комплекс закономерностей и правил «земного» бытия, в противоположность теологии - науке о духовной жизни. В современном его понимании термин «геология» впервые был применён в 1657 норвежским естествоиспытателем М. П. Эшольтом в работе, посвящённой крупному землетрясению, охватившему всю Южную Норвегию (Geologia Norwegica, 1657). В конце в. немецкий геолог Г. К. Фюксель предложил, а немецкий минералог и геолог А. Г. Вернер ввёл (1780) в литературу термин «геогнозия» для явлений и объектов, изучаемых геологами на поверхности Земли. С этого времени и до середины 19 в. термин «геогнозия» шире, чем в других странах, применялся в России и Германии (хотя чёткого разграничения между понятиями «геология» и «геогнозия» не было), но к 1900 он уже не фигурирует, вытесняясь термином «геология».

Конец 17 в. характеризовался ростом числа геологических наблюдений, а также появлением научных трудов, в которых делаются попытки обобщить существующие знания в некоторую общую теорию Земли. Большинство учёных конца 17 - начала 18 вв. придерживалось представления о существовании в истории Земли всемирного потопа, в результате которого образовались осадочные породы и содержащиеся в них окаменелости. Эти воззрения, получившие название дилювианизма, разделяли английские естествоиспытатели Р. Гук (1688), Дж. Рей (1692), Дж. Вудворд (1695), швейцарский учёный И. Я. Шёйкцер (1708) и др.

Геология как самостоятельная ветвь естествознания начала складываться во 2-й половине 18 в., когда на фоне развития научно-технического прогресса и новых капиталистических отношений стали быстро расти потребности общества в ископаемом минеральном сырье и в связи с этим возрос интерес к изучению недр. Этот период истории геологии характеризовался разработкой элементарных приёмов наблюдения и накопления фактического материала. Исследования сводились главным образом к описанию свойств и условий залегания горных пород. Но эти исследования сопровождались попытками объяснить генезис горных пород и вникнуть в суть процессов, происходящих как на поверхности Земли, так и в её недрах.

Выдающееся значение имели геологические труды М. В. Ломоносова: «Слово о рождении металлов от трясения Земли» (1757) и «О слоях земных» (1763), в которых он всесторонне и взаимосвязано излагал существовавшие в то время геологические данные и собственные наблюдения. В середине 18 в. появляются геологические карты (точнее, литологопетрографические), сначала небольших участков, а затем и крупных территорий. На этих картах показывался состав горных пород, но не указывался возраст. В России первой «геогностической» картой была карта Восточного Забайкалья, составленная в 1789-94 гг. Д. Лебедевым и М. Ивановым. Первая «геолого-стратиграфическая карта», охватывавшая значительные территории Европейской России, составлена в конце 1840 г. Н. И. Кокшаровым. На ней уже были выделены формации: силурийская, древнего красного песчаника (девон), горного известняка (нижний карбон), триасовая и третичная. В начале 1841г. Г. П. Гельмерсен опубликовал «Генеральную карту горных формаций Европейской России».

Рождение геологии как науки относится к концу 18 - началу 19 вв. и связывается с установлением возможности разделять слои земной коры по возрасту на основании сохранившихся в них остатков древней фауны и флоры. Позднее это позволило обобщить и систематизировать разрозненные ранее минералогические и палеонтологические данные, сделало возможным построение геохронологической шкалы и создание геологических реконструкций.

Впервые на возможность расчленения слоистых толщ по сохранившимся в них ископаемым органическим остаткам указал в 1790 г. английский учёный У. Смит, который составил «шкалу осадочных образований Англии», а затем в 1815 г. первую геологическую карту Англии. Большие заслуги в расчленении земной коры по останкам моллюсков и позвоночных принадлежат французским учёным Ж. Кювье. Немецкий геолог Л. Бух выступил в 1825г. с теорией «кратеров поднятия», объясняя все движения земной коры за счёт вулканизма; эти идеи он отстаивал и в дальнейшем, хотя в 1833 г. французский учёный К. Прево выяснил, что вулканические конусы представляют собой не поднятия, а скопления продуктов извержения. В то же время французский геолог Л. Эли де Бомон (1829) предложил контракционную гипотезу, объясняющую дислокации слоев сжатием земной коры при остывании и уменьшении объёма её центрального раскалённого ядра. Эта гипотеза разделялась большинством геологов до начала 20 в.

Трудом Ч. Лайеля «Основы геологии» (1830-33) были окончательно опровергнуты предрассудки о малой продолжительности геологической истории Земли и на большом фактическом материале показано, что для объяснения её нет необходимости обращаться к сверхъестественным силам и катастрофам, т. к. действующие ныне геологические агенты (атмосферные осадки, ветер, морские приливы, вулканы, землетрясения) на протяжении миллионов лет производят величайшие изменения в строении земной коры. Важным достижением Ч. Лайеля и его современников в Германии, России и Франции была глубокая разработка актуалистического метода, позволившего расшифровать события геологического прошлого. Представления, выработанные Ч. Лайелем, имели и свои недостатки, заключавшиеся в том, что он считал действующие на Земле силы постоянными по качеству и по интенсивности, не видел их изменения и связанного с этим развития Земли.

Огромное значение для дальнейшего развития стратиграфии имело эволюционное учение Ч. Дарвина. Оно дало прочную методологическую базу для детального расчленения по возрасту осадочной оболочки Земли путём изучения филогенетических изменений отдельных групп ископаемых животных и растений. В создании эволюционной палеонтологии большую роль сыграл и русский учёный К. Ф. Рулье, изучавший юрские отложения Подмосковья, и ещё до Дарвина защищавший идею эволюционного развития неорганической природы и организмов. Во 2-й половине 19 в. эволюционные идеи получили широкое распространение, были разработаны научные принципы историко-геологических исследований (И.

Вальтер) и положено начало эволюционной палеонтологии (В. О. Ковалевский). Важное значение имели труды русских исследователей конца 19 - начала 20 вв. В ряде монографий, посвящённых ископаемым головоногим моллюскам и рыбам, А. П. Карпинский показал перспективы, которые открывает для стратиграфии изучение развития организмов. А. П. Павлов, исследуя юрские и нижнемеловые отложения, заложил основы сравнительной стратиграфии, учитывающей разнообразие зоогеографических и палеогеографических обстановок прошлого; Н. И. Андрусов на примере неогеновых отложений юга России показал тесную связь между изменениями солёности и других физико-географических условий бассейнов прошлого и особенностями развития их фауны.

Во 2-й половине 19 в. были достигнуты первые успехи в изучении и расчленении докембрийских образований. Американский геолог Дж. Дана (1872) выделил архейскую группу отложений, первоначально охватывавшую весь докембрий; позднее из её состава американские геологи С. Эммонс и Р. Ирвинг (1888) выделили протерозойскую группу.

Таким образом, к концу 80-х гг. были установлены основные подразделения современной стратиграфической шкалы, официально принятой на 2-м Международном геологическом конгрессе в Болонье в 1881 г. Успехи палеонтологии и стратиграфии способствовали разработке метода восстановления палеогеографических условий прошлых эпох и возникновению к началу 20 в. новой геологической дисциплины - палеогеографии.

Во 2-й половине 19 в. усилился процесс дифференциации геологии. Из сравнительно монолитной науки геология превращается в сложный комплекс геологических наук. Кроме стратиграфии, которая была в 19 в. ведущим направлением, обеспечившим хронологическую основу истории Земли, развивались и другие направления геологии. Исследовалась не только вертикальная последовательность слоев, но также изменения их вещественного состава по простиранию, связанные с изменением условий образования пород. Швейцарский геолог А. Гресли (1838) впервые предложил все породы, образовавшиеся в одинаковых условиях, объединять под названием «фации». Учение о фациях разрабатывалось русским геологом Н. А. Головкинским.

Современная минералогия начала создаваться на рубеже 18 и 19 вв. трудами русских геологов В. М. Севергина, Д. И. Соколова, французского учёного Р. Аюи (Гаюи) и шведского химика Я. Берцелиуса. Дальнейшее её развитие в России связано с именами Н. И. Кокшарова, П. В. Еремеева, М. В. Ерофеева и А. В. Гадолина. В конце 19 в. появились работы Е. С.

Фёдорова, создателя учения о симметрии и теории строения кристаллического вещества, автора новых методов гониометрических и оптических исследований минералов. В 19 в. в качестве самостоятельной геологической дисциплины обособилась петрография, что связано с началом (1858) использования поляризационных микроскопов для исследования горных пород. Был накоплен огромный материал по их микроскопическому изучению, что позволило разработать первую петрографическую классификацию. Из них наибольшим признанием пользуется до сих пор классификация изверженных пород, предложенная в 1898 русским учёным Ф. Ю. Левинсон-Лессингом. В начале 20 в. получили развитие теоретические исследования по петрографии, в частности по проблемам образования магматических горных пород, происхождения и дифференциации магмы, по изучению процессов метаморфизма; начиналось экспериментальное физико-химическое изучение силикатных систем.

Конец 19 - начало 20 вв. знаменуется новым этапом в истории геологии. Переход капитализма в его новую империалистическую стадию вызвал расширение масштабов эксплуатации недр Земли и вовлёк в сферу мировых экономических связей новые, ранее не затронутые ими территории. Во всех ведущих странах мира возникают геологические службы, начинающие систематические геологосъёмочные работы. Новые обширные области охватываются геологическим исследованием, предваряя развитие в них горной промышленности. Растёт поток фактических данных и резко расширяется кругозор геологов, вводится подготовка специалистов-геологов. Эволюционные идеи прочно обосновываются в геологии, и в общих чертах воссоздаётся картина развития Земли и её поверхности.

Большое значение для развития геологии в России сыграла организация в 1882 г. Геологического комитета, которым руководили А. П. Карпинский, Ф. Н. Чернышёв, К. И. Богданович и др. С деятельностью комитета связан существенный сдвиг в изучении региональной геологии России и в развитии геологической картографии. Большую роль в развитии геологической картографии сыграло начатое с момента организации Геологического комитета составление общей «десятивёрстной» карты Европейской России (масштаб 1:420 ООО).

Во 2-й половине 19 в. появляются первые представления о существовании особо подвижных поясов земной коры - геосинклиналей (американские геологи Дж. Холл, Дж. Дана, французский геолог Э. Ог), которые противопоставляются устойчивым областям - платформам. Французский геолог М. Бертран и австрийский геолог Э. Зюсс в конце 19 в. для территории Европы выделили разновозрастные эпохи складчатости (каледонская, герцинская и альпийская); началось издание первого многотомного описания геологического строения всей планеты («Лик Земли» австрийского геолога Э. Зюсса). В 20 в. геология, как и всё естествознание в целом, развивается гораздо быстрее, чем ранее. За первыми широкими теоретическими обобщениями следуют новые, часто во многом их исправляющие или опровергающие. Крупным событием этого времени было открытие (1899-1903) французскими учёными П. Кюри и М. Склодовской-Кюри радиоактивного распада элементов, сопровождающегося самопроизвольным выделением тепла. Оно позволило разработать методику определения абсолютного возраста горных пород, а следовательно, и продолжительности многих геологических процессов. На этой основе в последующем получила развитие геология докембрия.

С радиоактивным распадом в недрах Земли стали связывать наличие тепловой энергии планеты, а также активизацию тектонических движений и вулканизм, что привело к коренному пересмотру фундаментальных геологических концепций. В частности, были поколеблены основы контракционной гипотезы, а представления о первоначальном огненно-жидком состоянии Земли были заменены идеями о её образовании из скоплений холодных твёрдых частиц, которые нашли окончательное выражение в космогонической гипотезе О. Ю. Шмидта.

Усовершенствуется также методика изучения веществ, состава горных пород (массспектрометрический, рентгеноструктурный и другие анализы) и строения земной коры.

Серьёзное внимание обращается на развитие региональных геологических исследований, особенно на геологическую съёмку как основу для выявления минеральных богатств.

Стратиграфические схемы, разработанные к началу 20 в. только для Европы и отчасти для Северной Америки, стали детализироваться и создаваться для всех остальных материков в связи с широким развёртыванием геологического картирования. Значительным событием в развитии стратиграфии было установление Н. С. Шатским (1945) новой, рифейской группы отложений, лежащей между протерозоем и палеозоем, и выделение соответствующего отрезка времени в истории Земли продолжительностью около 1 млрд лет. Рифейские отложения выделены на всех континентах, а их расчленение и сопоставление разрезов успешно осуществляется с помощью изучения строматолитов. В трудах советских (Д. В. Наливкина, В. В.

Меннера, Б. С. Соколова, В. Н. Сакса и др.) и зарубежных (французского геолога М. Жииью, Меннера, Б. С. Соколова, В. Н. Сакса и др.) и зарубежных (французского геолога М. Жинью, английского геолога В. Аркела, американских геологов Дж. Роджерса, У. К. Крумбейна и мн.

др.) геологов была детально разработана стратиграфия палеозойских, мезозойских и кайнозойских отложений.

В области тектоники для 20 в. характерны: разработка учения о движениях земной коры, в том числе о возможности горизонтальных перемещений крупных её блоков (эпейрофорез); разработка классификаций тектонических форм и теории геосинклиналей и платформ (в СССР - А. Д. Архангельский, М. М. Тетяев, Н. С. Шатский, В. В. Белоусов, М. В. Муратов, В. Е. Хаин; за рубежом - немецкие геологи X. Штилле и С. Н. Бубнов, швейцарец Э. Арган, американские геологи Р. Обуэн и М. Кей); установление их различных типов и стадий развития, а также переходных между геосинклиналями и платформами образований - краевых прогибов. Впервые выделены в 1946 г. (А. В. Пейве, Н. А. Штрейс), а затем детально исследованы глубинные разломы земной коры. Успехи теоретической тектоники, а также широкий размах глубокого бурения и геофизических исследований создали предпосылки для тектонического районирования - разделения территории материков на крупные структурные элементы с разной историей развития и, следовательно, с разными ассоциациями и рядами геологических формаций. Учение о формациях было оформлено в трудах Н. С. Шатского и Н. П. Хераскова, а затем для магматических формаций - в трудах Ю. А. Кузнецова.

В 50-60-х гг. начали составляться тектонические карты СССР (Н. С. Шатский, 1953, 1956; Т. Н. Спижарский, 1966), Европы (Н. С. Шатский, А. А. Богданов и др., 1964), Евразии (А. Л. Яншин и др., 1966), Африки (Ю. А. Шубер, 1968), Северной Америки (Ф. Кинг, 1969), а также крупномасштабные тектонические карты отдельных областей и районов в целях выяснения главных закономерностей размещения полезных ископаемых. В СССР положено начало изучению новейших тектонических движений и созданию неотектоники (В. А. Обручев, Н. Н. Николаев, С. С. Шульц). В связи с разведкой и разработкой полезных ископаемых в осадочных толщах в качестве самостоятельной дисциплины выделились петрография осадочных пород, или литология, в развитии которой главная роль принадлежит советским учёным.

С петрографией осадочных пород тесно связано учение о фациях, получившее наиболее глубокую разработку в трудах Д. В. Наливкина. Разработан ряд новых методов изучения веществ, состава горных пород (спектроскопический, рентгеноструктурный, термометрический анализы). В минералогии была оформлена современная кристаллохимическая теория конституции минералов (Н. В. Белов, В. С. Соболев и др.), достигнуты успехи в синтезе многих минералов (Д. С. Белянкин, Д. П. Григорьев), большая группа работ посвящена пегматитам (А. Н. Заварицкий, А. Е. Ферсман), физико-химическому анализу природных ассоциаций минералов (А. Г. Бетехтин, Д. С. Коржинский и др.). Успешно развивались: вулканология (В. И. Влодавец, Б. И. Пийп, Г. С. Горшков, американские геологи X. Уильяме, А. Ритман, французский геолог Г. Тазиев), гидрогеология и гидрогеохимия (Н. Ф. Погребов, Н. Н. Славянов, А. Н. Семихатов, Ф. П. Саваренский, Г. Н. Каменский, Н. И. Толстихин, И. К. Зайцев), геология четвертичных отложений (Г. Ф. Мирчинк. Я. С. Эделыптейн, С. А. Яковлев, В. И. Громов, А. И. Москвитин, Е. В. Шанцер, немецкий учёный П. Вольдштедт, американский геолог Р. Флинт, шведский геолог Г. Геер).

На стыке геологии и химии в 20 в. обособилась наука «геохимия», принципы которой были сформулированы В. И. Вернадским и норвежским геохимиком В. М. Гольдшмидтом и развивались в СССР в трудах А. Е. Ферсмана и А. П. Виноградова. Выяснена огромная роль развития жизни на Земле как фактора, приведшего к образованию органогенных пород (коралловые рифы, каменные угли и др.), существенно изменившего состав атмосферы и гидросферы, а также непосредственно влиявшего на ход многих геологических процессов (например, выветривания). В связи с этим выделился особый раздел геохимии - биогеохимия, а для оболочки Земли, в которой протекают биологические процессы, В. И. Вернадским было предложено название биосферы. На стыке геологии и физики развилась геофизика. Появление и развитие геохимии и геофизики в огромной степени способствовало успехам геологических исследований, в практику которых с начала 20-х гг. прочно вошли геофизические и геохимические методы.

В последнюю четверть века интенсивно развивается геология дна морей и океанов в целях промышленного освоения полезных ископаемых обширных пространств континентального шельфа. В исследованиях геологии морского дна широко применяются геофизические методы, а в последние годы и бурение со специально оборудованных судов.

На территории СССР все отрасли геологии получили бурное развитие после Великой Октябрьской социалистической революции. За годы Советской власти страна покрыта геологической съёмкой масштаба 1:1 000 000, начатой по инициативе и под руководством А. П. Герасимова, а значительные её области - съёмками масштаба 1:200 000, тогда как до 1917 геологические карты, при этом значительно менее детальные, были составлены лишь для 10% площади России. В 1922 и 1925 гг. были изданы первые геологические карты Азиатской части СССР, в 1937 - первые геологические карты территории СССР в целом. Первая геологическая карта территории СССР без «белых пятен» (неисследованных областей) была издана в 1955 в масштабе 1: 2 500 000. Третье её издание (Д. В. Наливкин, А. П. Марковский, С. А. Музылев, Е. Т. Шаталов) вышло в 1965 г. Составлен ряд специальных карт - геоморфологических, четвертичных отложений, палеогеографических, палеотектонических, гидрогеологических, гидрогеохимических, магматических формаций, металлогенических, угленакопления, нефтегазоносности и др. Данные о геологическом строении СССР обобщены в трудах В. А. Обручева, А. Д. Архангельского, А. Н. Мазаровича, Д. В. Наливкина, а также в многотомных монографиях «Геология СССР», «Гидрогеология СССР», «Стратиграфия СССР» и др.

В 1951-52 гг. было издано первое в СССР учебное пособие (автор А. Н. Мазарович) по курсу региональной геологии мира, дающее общую характеристику геологического строения всех материков земного шара. Большое значение имело также издание научнопопулярной литературы по геологии (В. А. Обручев, А. Е. Ферсман, В. А. Варсанофьева и др.).

Работы по планированию и организации геологических исследований в СССР велись Министерством геологии СССР и министерствами союзных республик через территориальные геологические управления и геологические учреждения других министерств, связанных с разработкой минеральных ресурсов и строительством (см. Геологическая служба). Научную работу по геологии проводили около 80 научно-исследовательских институтов и лабораторий Министерства геологии и некоторых других министерств, АН СССР и АН союзных республик. В СССР издавался ряд периодических научных геологических журналов.

Организация геологических исследований в международном масштабе и обсуждение важнейших проблем геологии осуществляется основанным в 1875 Международным геологическим конгрессом. В перерывах между сессиями конгресса межнациональными исследованиями руководит с 1967 г. Международный союз геологических наук.

В настоящее время вопросами геологических исследований занимается Федеральное агентство по недропользованию, входящее в состав Министерства природных ресурсов РФ, которое организует:

- государственное геологическое изучение недр;

- экспертизу проектов геологического изучения недр;

- проведение в установленном порядке геолого-экономической и стоимостной оценки месторождений полезных ископаемых и участков недр;

- проведение в установленном порядке конкурсов и аукционов на право пользования недрами;

- проведение государственной экспертизы информации о разведанных запасах полезных ископаемых, геологической, экономической информации о предоставляемых в пользование участках недр;

- отнесение запасов полезных ископаемых к кондиционным или некондиционным запасам, а также определение нормативов содержания полезных ископаемых, остающихся во вскрышных, вмещающих породах, в отвалах или в отходах горно-добывающего и перерабатывающего производства, по результатам технико-экономического обоснования эксплуатационных кондиций для подсчета разведанных запасов.

Основные задачи геологии. Поскольку залежи полезных ископаемых на поверхности Земли в основном исчерпаны, одной из главных задач современной геологии является поиск и освоение невидимых с поверхности(«слепых», или «скрытых») месторождений. Поиски их могут производиться лишь с помощью геологических прогнозов, что требует усиленного развития всех направлений геологии. Для исследования глубинных зон Земли и их минеральных ресурсов необходимо изучение земной коры и верхней мантии геофизическими методами, изучение метаморфических и магматических образований, их состава, строения и условий образования как показателей состояния вещества и его преобразований в глубинных зонах Земли, бурение сверхглубоких скважин и исследование докембрийских толщ с позиций стратиграфии, тектоники, минералогии, петрографии и размещения в них полезных ископаемых.

В связи с увеличением потребности в цветных и редких металлах и необходимостью расширения минерально-сырьевой базы возникла проблема использования ресурсов морей и океанов. Поэтому одной из актуальных задач геологии является изучение геологии дна морей и океанов. В последнее десятилетие начались работы по детальному изучению подземного тепла как возможного энергетического ресурса будущего. В ряде стран (Исландия, Италия, Япония, Новая Зеландия, в России на Камчатке) перегретый пар, выделяющийся из скважин, уже используется для отопления и получения электроэнергии.

Важнейшей задачей геологии является дальнейшая разработка теории развития Земли, в частности, исследование эволюции внутренних и внешних геологических процессов, определяющих закономерности распространения минеральных ресурсов.

В связи с успехами космических исследований одной из основных проблем геологии становится сравнительное изучение Земли и других планет,

2. ПРОИСХОЖДЕНИЕ СОЛНЕЧНОЙ СИСТЕМЫ И СВЕДЕНИЯ О ЗЕМЛЕ

2.1. Происхождение Солнечной системы 2.2. Форма, размер, масса, плотность и физические поля Земли 2.3. Внутреннее строение Земли и земной коры 2.1. Происхождение Солнечной системы Наша Земля - одна из девяти планет Солнечной системы, а Солнце - рядовая звезда желтый карлик, находящаяся в галактике Млечного Пути, одной из сотен миллионов галактик в наблюдаемой части Вселенной. Наблюдаемая Вселенная содержит лишь 1/9 вещества, из которого, согласно расчётам, должна быть образована масса Вселенной. В наблюдаемой форме Вселенная возникла 1 8 - 2 0 миллиардов лет назад. До этого всё её вещество находилось в условиях бесконечно больших температур и плотностей, которые современная физика не в состоянии описать.

Существует несколько теорий происхождения Солнечной системы. Космогония наука о происхождении планет и Вселенной, насчитывает более двухсот теорий о происхождении звёзд, планет и Вселенной. Но, наиболее вероятными, считаются лишь несколько из них. Гипотеза Канта - Лапласа (1755-1797), согласно которой первичная Вселенная состояла из хаоса, твёрдых раскалённых частиц, получивших вращение согласно закону всемирного тяготения (Кант). Согласно Лапласу Солнечная система состояла из газовой раскалённой туманности, сразу получившей вращение. В 1948 г. О. Ю. Шмитд выдвинул теорию об образоманности, сразу получившей вращение. В 1948 г. О. Ю. Шмитд выдвинул теорию об образовании Солнечной системы из холодного облака межзвёздной материи. Согласно теории Амбарцумянца, примерно 5 миллиардов лет назад, под влиянием взрыва в звездной ассоциации нашей Галактики возникло большое сгущение холодной газопылевой материи, из которой под воздействием сжатия и ядерных реакций образовалось Солнце и зачатки планет Солнечной системы. Наиболее вероятной считается теория, предложенная В. И. Зубовым и Н. А. Кожиным (1996). Причиной образования планет нашей системы явился взрыв сверхновой звезды. Ударная волна от взрыва около 5 миллиардов лет назад сильно сжала газопылевую туманность. Концентрация материального вещества: (пыли, смеси газов, тяжелых металлов) оказалась столь велика, что это привело к началу термоядерного синтеза, росту температуры, давления, самогравитации в первичном Солнце и зарождению первичных планет (протопланет) [4].

2.2. Форма, размер, масса, плотность и физические поля Земли Впервые вывод о шарообразной форме Земли за 250 лет до н. э. высказал древнегреческий учёный Эрастофен Киренский. Предположение о том, что Земля не является идеальным шаром, а сплюснута у полюсов, было высказано Исааком Ньютоном в 1680 году. Он назвал форму Земли эллипсоидом вращения. Это подтвердили работы директора Пулковской обсерватории В. Я. Струве. Дальнейшие исследования показали более сложную форму Земли, названную геоидом («землеподобный»). На форму Земли сильное влияние оказали горы и океанические впадины, разница высот которых составляет 20 км. Геоид - это воображаемая уровенная поверхность, которая характеризуется тем, что направление силы тяжести к ней везде перпендикулярно. Если мысленно подвести уровень поверхности воды в Мировом океане под континенты, то получится геоид (рис. 1).

Масса и плотность. По данным геофизических исследований масса Земли составляет 5,98x1027т. Зная массу и размер Земли, определили её плотность, которая составляет 5,52 г/см3, а средняя плотность земной коры 2,8г/см3.Все горные породы имеют разную плотность. Плотность осадочных пород составляет 2,4 - 2,5, метаморфических - 2.7 - 2,8, а магматических - 2,9 - 3 г/см3. С глубиной плотность возрастает и в центре Земли достигает 12,5 - 13 г/см3.

Температура. Температура Земли на поверхности на 99,5% зависит от тепла, получаемого от Солнца, и на 0,5% от притока внутреннего тепла. Глубина пояса постоянных температур в различных районах Земли колеблется от 20 до 30 метров. Геотермическая ступень составляет в среднем 32 метра. То есть, через каждые 32 метра температура возрастает на градус. Температура глубоких слоёв (от 100 до 400 км) Земли колеблется от 1250 до градусов, в верхней мантии 1600 °С.

Источниками тепловой энергии Земли являются радиогенное тепло, химикоплотностная дифференциация вещества и приливное трение.

Суммарный тепловой поток, проходящий через поверхность Земли, составляет 4,2-4,5x10 20 эрг/с.

Электрическое поле Земли можно сравнить с конденсатором, отрицательный заряд которого находится в верхних слоях Земли, а положительный в верхних слоях атмосферы.

Напряжённость электрического поля изменяется от 130 В/м в средних широтах до 70 В/м у полюсов. Оно изменяется по временам года и суток и зависит от активности Солнца, атмосферных явлений, магнитного поля Земли.

Магнитное поле Земли играет важную роль в жизни планеты. Оно предохраняет Землю от магнитных солнечных бурь. Пространство, в котором проявляется напряженность магнитного поля, называется магнитосферой. Магнитность Земли колеблется от 0,6-0,7 эрстэд у магнитных полюсов до 0,25-0,42 эрстэд у экватора. Магнитное поле Земли имеет полюса: северный и южный, но со временем оно меняет- свое положение, как бы блуждает по Земле. В настоящее время северный магнитный полюс располагается вблизи южного географического полюса, а южный магнитный полюс - вблизи северного географического полюса.

2.3. Внутреннее строение Земли Внутреннее строение Земли изучается различными методами и способами.

Приповерхностные слои изучаются геологическими методами, основанными на изучении естественных обнажений горных пород, разрезов шахт и рудников кернов буровых скважин, до глубины около 12 км (Кольская скважина). И до 50 - 100 км, - по продуктам извержений вулканов в вулканических областях. Строение более глубоких слоев изучается геофизическими методами: сейсмическим, гравиметрическим, магнитометрическим и др. Одним из важнейших методов является сейсмический метод, основанный на изучении естественных и искусственных землетрясений. Очаги землетрясений располагаются на различной глубине, от приповерхностных-10 км, до глубоких-700 км. Сейсмические волны, прохода через земные слои в различных направлениях, дают представление об их строении. Существуют два главных типа сейсмических волн: быстрые продольные Р-волны и более медленные поперечные S-волны. Р-волны вызывают сжатие и растяжение горных пород (смещение частиц среды вдоль направления волны), и распространяются в твёрдых и жидких телах земных недр.

Поперечные S-волны распространяются только в твёрдых телах и вызывают колебания горных пород под прямым углом к направлению распространения волны. Кроме того, выделяют поверхностные L-волны, отличающиеся сложными синусоидальными колебаниями вдоль или около земной поверхности [3].

Прохождение волн регистрируется специальными приборами - сейсмографами, на сейсмических станциях. Это позволяет судить о скорости распространения сейсмических волн, поскольку на разных глубинах волны распространяются с разной скоростью, кроме того, их скорость зависит от упругости и плотности горных пород. Изменение скорости сейсмических волн, отражённые и преломлённые волны позволяют судить о неоднородности Земли, о состоянии вещества, слагающего разные слои. На основании скорости распространения волн Землю разделили на несколько зон, дав им буквенные обозначения в усреднённых интервалах глубин. Выделяют три главные области Земли:

1. Земная кора (слой А) - верхняя оболочка Земли, мощность которой изменяется от 6 - 7 км под глубокими частями океанов до 30 - 40 км под равнинными платформенными территориями континентов и до 50 - 70 км под горными образованиями.

2. Мантия Земли, распространяется до глубин 2900 км. В ее пределах выделяют верхнюю мантию (слой В) - до глубины 400 км, среднюю мантию (слой С) до глубины 800 км, нижнюю мантию (слой D1) до глубины 2700 км с переходным слоем D от 2700 до 2900 км 3. Ядро Земли, в котором выделяют внешнее ядро (слой Е) с глубиной от 2900 до 4980 км, с переходной оболочкой (слой F) от 4980 до 5120 км и внутреннее ядро - слой G до 6970 км (рис. 2).

Строение земной коры В строении земной коры принимают участие все типы горных пород - магматические, осадочные и метаморфические, залегающие выше границы Мохоровичича. На континентах и под океанами существуют как устойчивые, так и подвижные участки земной коры. На континентах к устойчивым участкам относятся равнинные пространства - платформы, в пределах которых размещаются наиболее устойчивые участки - щиты. К подвижным участкам относятся молодые горные сооружения Альпы, Кавказ, Гималаи. Материковые структуры в ряде случаев продолжатся в океане, образуя подводную окраину материков, состоящую из шельфа глубиной до 200 м, континентального склона с подножьем до глубины 2500 - м. В океанах так же выделяют стабильные области (океанские платформы - абиссальные равнины глубиной 4- 6 км) и подвижные пояса (срединно-океанские хребты) активные окраины Тихого океана и глубоководные желоба.

В настоящее время выделяют два основных типа земной коры: континентальный и океанский, резко отличающиеся строением и мощностью, и два переходных: субконтинентальные и субокеанский.

Мощность континентальной земной коры изменяется от 30 - 40 км в пределах платформ до 55 - 7 0 км в молодых горных сооружениях. Континентальная кора состоит из трёх слоев. Первый - самый верхний - представлен осадочными горными породами, мощностью до 5 (10) км в пределах платформ, 15 - 20 км в тектонических прогибах горных сооружений. Скорость прохождения продольных сейсмических волн 5 км/с. Второй - гранитный слой - на 50% сложен гранитами, на 40% гнейсами и другими метаморфизированными породами. Его мощность составляет 1 5 - 2 0, иногда до 25 км. Скорость сейсмических волн 5, -6 км/с. Третий, нижний, слой называется «базальтовым». По среднему химическому составу и скорости прохождения сейсмических волн он близок к базальтам. Его мощность колеблется от 15 до 35 км, а скорость прохождения сейсмических волн составляет 6,5 -6,7 км/с.

По современным данным океанская земная кора имеет трёхслойное строение при средней мощность 6 -7 км.

1. Первый верхний слой океанской коры - осадочный, состоит преимущественно из различных осадков, находящихся в рыхлом состоянии.. Его мощность составляет от нескольких сот до одного километра. Скорость распространения сейсмических волн составляет 2 - 2,5 км/с.

2. Второй океанский слой сложен преимущественно базальтами с прослоями карбонатных и кремнистых пород. Мощность его составляет от 1 до 3 км. Скорость распространения сейсмических волн 3,5- 4,5 км/с.

3. Третий нижний слой океанской коры предположительно сложен основными магматическими породами типа габро с подчинёнными серпентинитами. Его мощность составляет от 3,5 до 5 км, а скорость прохождения сейсмических волн колеблется от 6, Субконтинентальный тип земной коры по своему строению аналогичен континентальному, но выделяется в связи с нечёткой границей распространения сейсмических волн.

Этот тип коры обычно связывают с островными дугами и окраинами материков. Он отличается высокой тектонической и магматической активностью.

Субокеанский тип земной коры приурочен к котловинным частям окраинных и внутриконтинентальных морей. По строению этот тип близок к океанскому, но отличается от него повышенной мощностью (4 - 10 и более км) осадочного слоя, располагающегося на третьем океанском слое.

3. ВЕЩЕСТВЕННЫЙ СОСТАВ ЗЕМНОЙ КОРЫ

3.1. Химический состав земной коры 3.2. Минералы и их образование минералов 3.3. Физические свойства минералов 3.4. Образование минералов 3.5. Классификация минералов 3.1. Химический состав земной коры Химический состав геосфер Земли, существенно отличается. Внутреннее ядро, составляющее 1,7% массы Земли, состоит, вероятно, на 10% из никеля и на 90% из железа, внешнее ядро - 30% массы - представлено смесью железа и серы, в которой на серу приходится 12% и около 2% никеля с примесью окислов магния.

В составе мантии Земли преобладают кислород, кремний и алюминий, в меньшем количестве магний и железо. В целом она представлена пиролитом - сложным комплексом пород ультраосновного состава. Химический состав верхней и нижней мантии почти одинаковый. Наиболее полно изучен состав земной коры. На долю кислорода, кремния и алюминия приходится 84,5%, вторую группу распространённых элементов составляют железо, кальций, натрий, фтор, магний - 14,48%. На остальные элементы приходится 0,8% массы земной коры. Сравнительный анализ химического состава земной коры, мантии и ядра показывает, что в земной коре более высокое содержание кислорода, кремния, алюминия, калия, натрия, кальция и низкое железа и магния, никеля хрома и кобальта [4]. Геологические процессы, происходящие внутри Земли, такие как перемешивание расплавленной магмы с образовавшимися ранее горными породами, разделение магмы и многие другие, а также процессы, действующие на поверхности Земли, приводят к образованию разнообразных минералов, горных пород и полезных ископаемых 3.2. Форма минералов и кристаллов Минералами называются природные химические элементы, возникшие в результате физико-химических процессов, происходящих на Земле. В земной коре минералы находятся преимущественно в кристаллическом состоянии, которое выражается в их геометрически правильной многогранной форме. Свойства кристаллических веществ обусловлены как их составом, так и внутренним строением, т. е. кристаллической структурой.

Рис.З. Кристалл алмаза :

а - вершины; б - ребра; в - грани В каждом кристалле, слагающие его частицы располагаются в пространстве правильными рядами, сетками и решетками. В соответствии с этим в кристаллах выделяют ось симметрии, плоскость симметрии и центр симметрии (рис.5).

3.3. Физические свойства минералов Внутренняя структура минералов и устойчивый химический состав обусловливают их физические свойства. К наиболее распространённым относятся: твёрдость, плотность, цвет, блеск, спайность, хрупкость, цвет черты, магнитность, вкус и т. д.

Твёрдость. Под твёрдостью понимают способность минералов противостоять механическому воздействию.

Твёрдость минералов определяют по шкале Мооса (табл. 1).

Цвет минералов определяется способностью минералов поглощать ту или иную часть спектра. Но этот признак относительный, так как многие минералы окрашены одинаково. Поэтому этим признаком можно пользоваться только в сочетании с другими.

Цвет черты. Под этим признаком понимают цвет черты, оставляемой минералом, если провести им по фарфоровой пластине. Для некоторых минералов черта является характерным признаком. Например, гематит визуально трудно отличить от магнетита, но гематит оставляет черту вишневого цвета, а магнетит - чёрного.

Блеск обусловлен способностью минералов, отражать свет. По характеру блеска минералы делятся на две основные группы: минералы с металлическим блеском и минералы с неметаллическим блеском. Группа минералов с металлическим блеском малочисленна. Они представлены, прежде всего, рудами металлов (галенит, пирит, халькопирит и др.). Около 70% минералов обладают неметаллическим блеском. Различают несколько видов неметаллического блеска: алмазный (алмаз, сфалерит и др.); стеклянный блеск (кварц, кальцит, полевой шпат и др.); жирный блеск (сера, нефелин и др.); шелковистый блеск (асбест, халцедон и др.); полуметаллический блеск (графит, гематит); перламутровый блеск (тальк).

Прозрачность - свойство обратной блеску, то есть это способность минералов пропускать свет. Многие минералы прозрачны. Кварц, гипс, алмаз. К непрозрачным минералам относятся: магнетит, хромит, галенит, золото и др.

Спайность - способность минералов при ударе раскалываться по определённым плоскостям. Различают несколько видов спайности: весьма совершенная, совершенная, несовершенная. В первом случае минералы легко раскалываются на тонкие листочки и пластинки (тальк, мусковит, гипс). Во втором - минералы раскалываются по нескольким направлениям (кальцит, галит, галенит). В третьем случае минералы при ударе распадаются на обломки с неровными поверхностями или вообще не образует поверхностей (апатит халькопирит, кварц).

Излом - вид поверхности, получаемый при ударе не по плоскости спайности. Все минералы отличаются по виду излома: раковистый - напоминает строение раковины (кварц, опал), занозистый - имеет занозистое строение (асбест, роговая обманка), при зернистом изломе поверхность выглядит в виде зерен (ангидрит, галит). Самородные элементы имеют крючковатый излом (золото, серебро, медь).

Плотность определяется визуально (органолептически) путём взвешивания на ладони. По этому принципу все минералы делятся на лёгкие (плотность от 1 до 3 г/см3 (гипс, кварц)), средние минералы имеют плотность от 3 до 4 г/см3 (апатит, роговая обманка), тяжёлые минералы имеют плотность более 4 г/см3 (галенит, пирит).

Магнитность проявляется в способности минералов отклонять стрелку компаса (магнетит).

Двойное лучепреломление наблюдается у прозрачной разновидности кальцита.

По вкусу можно различить внешне похожие минералы галит (он солёный) от сильвина (он горький).

Минералы, содержащие карбонаты, определяются реакцией с 5%- й соляной кислотой.

Жирность органолептически определяется у таких минералов, как тальк, сера, молебденит и др.

Важным диагностическим признаком является штриховатость на гранях минералов.

Например, кристаллы кварца имеют штриховку, перпендикулярную вытянутым граням, а у турмалина она ориентирована вдоль длинной стороны кристалла.

Морфологические признаки. Внешняя форма минералов может быть выражена кристаллами, большими многогранниками либо небольшими зёрнами. Хорошо огранённые кристаллы в природных условиях встречаются сравнительно редко, обычно они принимают неправильные очертания. Кроме единичных форм кристаллов встречаются их скопления: друзы (сростки кристаллов на стенках трещин и пустот), конкреции (шарообразные стяжения, желваки), жеоды (заполненные округлые полости), дендриты (тонкие кристаллы, подобные веткам растений). Часто в горных породах встречаются примазки, налёты и выцветы минералов.

Размеры отдельных кристаллов могут колебаться от нескольких метров (полевые шпаты, кварц) до частиц менее 1 мкм, которые можно рассмотреть только с помощью электронного микроскопа [7].

3.4. Образование минералов Минералами называют однородные по составу и строению вещества, образовавшиеся в результате природных физико-химических процессов и являющиеся составными частями горных пород и полезных ископаемых.

При рассмотрении природы образования минералов раскрывается генезис горных пород, составляющими которых они являются.

Одни минералы образуются внутри Земли (эндогенные процессы минералообразования) и на её поверхности (экзогенные процессы минералообразования), в морях и океанах.

Эндогенные процессы. К эндогенным процессам минералообразования, протекающим в недрах Земли, относятся: магматический, пегматитовый, пневматолитовый, гидротермальный и метаморфический.

При магматическом процессе образование минералов происходит непосредственно из расплавленной магмы при её остывании на глубине или при её движении к поверхности Земли при излиянии вулканов. При медленном остывании магмы из неё в первую очередь выделяются плагиоклазы, пироксены, позже слюды, полевые шпаты и в последнюю очередь кварц и химические элементы.

В последнюю стадию остывания силикатной магмы наблюдается пегматитовый процесс. При этом силикатный расплав, обогащенный соединениями элементов, внедряется в трещины, линзы и полости и по мере остывания кристаллизуется, образуя крупные пегматитовые тела. Пегматит - источник многочисленных минералов: плагиоклазов, кварца, турмалина берилла, топаза и многих других.

Пневматолитовый процесс возникает при кристаллизации расплава, насыщенного летучими компонентами, в условиях пониженного внешнего давления. Из газов и паров воды осаждаются самородная сера, вольфрам, молибден, висмут и др.

Вместе с горячими водными растворами из магмы выделяются многие химические элементы. Процесс кристаллизации минералов при остывании горячего водного раствора носит название гидротермального. Таким путём образовались кварц, галенит, халькопирит и многие другие.

Экзогенные процессы. В поверхностной зоне земной коры, в гидросфере и на поверхности Земли постоянно происходит разрушение горных пород и минералов и образование новых. Процессы образования новых минералов в поверхностных условиях получили название экзогенных. В этих процессах самую активную роль играют энергия солнца, ветра и воды. Минералы, образовавшиеся на экзогенном этапе, подразделяются на минералы осадочного генезиса, химического и органического. Осадочные минералы формируется в период осадконакопления и изменения осадка, минералы химического генезиса выделяются из перенасыщенного водного раствора в основном под воздействием энергии солнца (галит, ангидрит). Органические или биогенные образуются с участием живых организмов (самородная сера, фосфориты и др.).

Метаморфические процессы заключаются в изменении уже существующих минералов под действием температуры и давления в земной коре. Возникающие при этом минералы называются метаморфогенными. На небольших глубинах возникают хлорит, тальк, глубже 10-12 км минералы сильно разогреваются и приобретают свойства текучести, в таких условиях образуются биотит, мусковит, гранат, графит и др. В ходе этих процессов минералы приобретают ряд свойств.

Изоморфизм - это свойство элементов замещать друг друга в кристаллических решётках минералов, не нарушая их строения. Изоморфизм имеет практическое значение. Например, сфалерит является единственным минералом для получения индия и кадмия.

Полиморфизм способность двух или нескольких веществ одинакового состава кристаллизоваться в разных формах (изменение кристаллической решётки под действием температуры и давления), например алмаз и графит. Состав у этих минералов одинаковый - углерод, а кристаллизуются они в разные структуры, у алмаза - кубическая, у графита - гексагональная. Устойчивые разности одного и того же кристалла в определённых физикохимических условиях называются модификациями (у серы - 3, у кварца - 9). Процесс замещения одного минерала другим при сохранении внешней формы замещаемых кристаллов называется псевдоморфизмом.

3.5. Классификация минералов Минералы классифицируются по нескольким признакам, но наиболее распространённой является классификация по химическому составу.

Хотя химический состав служил основой классификации минералов с середины 19 в., минералоги не всегда придерживались единого мнения о том, каким должен быть порядок расположения в ней минералов. Согласно одному из методов построения классификации, минералы группировали по одинаковому главному металлу или катиону. При этом минералы железа попадали в одну группу, минералы свинца - в другую, минералы цинка - в третью и т. д. Однако по мере развития науки выяснилось, что минералы, содержащие один и тот же неметалл (анион или анионную группу), имеют сходные свойства и похожи между собой гораздо больше, чем минералы с общим металлом. К тому же минералы с общим анионом встречаются в одинаковой геологической обстановке и имеют близкое происхождение.

В результате в современной систематике (табл. 2) минералы объединяются в классы по признаку общего аниона или анионной группы. Единственное исключение составляют самородные элементы, которые встречаются в природе сами по себе, не образуя соединений с другими элементами.

Химические классы подразделяются на подклассы (по химизму и структурному мотиву), которые, в свою очередь, разбиваются на семейства и группы (по структурному типу).

Отдельные минеральные виды, входящие в состав группы, могут образовывать ряды, а один минеральный вид может иметь несколько разновидностей.

По химическому составу и внутреннему строению минералы подразделяются на классов (табл. 2).

К наиболее распространённым классам минералов относятся классы: самородных элементов, сульфидов, галоидов, окислов и гидроокислов, карбонатов, сульфатов, фосфатов и силикатов.

Класс силикатово Наиболее многочисленный класс (до 800 минералов) слагающих 90% массы земной коры. Минералы этого класса широко представлены в земной коре (78%).

Они образуются преимущественно в эндогенных условиях и связаны с магматическими и метаморфическими процессами. Многие из них являются породообразующими для магматических и метаморфических пород, реже осадочных. Силикаты характеризуются сложным химическим составом и внутренним строением. В основе их структуры лежит кремнекислородный тетраэдр [SiО4], в центре которого лежит ион кремния, а в вершинах ионы кислорода.

Самыми распространёнными среди силикатов являются полевые шпаты, которые подразделяются на калиево-натриевые (ортоклаз) и известково-натриевые, или плагиоклазы (альбит, Лабрадор, анортит).

В составе силикатов большое практическое значение имеет группа глинистых минералов - каолинит, гидрослюды и монтмориллонит. Они во многом определяют инженерногеологические особенности глинистых пород [4].

Класс карбонатов (кальцит - СаСО3, доломит - CaMg(CО3)2, сидерит - FeSО3 и др.).

В него входит около 80 минералов, среди которых наиболее известен кальцит, входящий в состав таких горных пород, как известняк и мрамор. Карбонаты растворяются в воде и вызывают развитие опасных геологических процессов [7]. Класс объединяет минералы, для которых характерна реакция с соляной кислотой. Интенсивность реакции определяет минералы карбонаты, близкие по многим свойствам. Они часто светлоокрашены со стеклянным блеском, совершенной спайностью. Образование карбонатов связано главным образом с поверхностными химическими и биохимическими процессами, а также с метаморфическими и гидротермальными.

Кальцит, или известковый шпат, СаСОз - один из наиболее распространённых в земной коре минералов, участвующих в строении как осадочных, так и метаморфических пород. Встречается в виде кристаллических и скрытокристаллических агрегатов различной плотности. Цвет от бесцветного до чёрного, блеск стеклянный, прозрачный или просвечивающий. Применяется в строительстве, металлургической и химической промышленностях, оптике, как поделочный камень [4].

Класс оксидов и гидроксидов. По количеству входящих в него минералов занимает одно из первых мест. На его долю приходится 17% всей массы земной коры, их них 12,5% составляют оксиды кремния и 3,9% оксиды железа. Образуются как в эндогенных, так и в экзогенных условиях. Кварц SiО2 - широко распространенный в земной коре породообразующий минерал. Его основой является кремнекислородный тетраэдр, в вершинах которого располагаются ионы кислорода, а в центре ион кремния. Встречается в виде зернистых агрегатов, образует кристаллы и их сростки. Цвет разнообразный: белый, серый. Встречаются окрашенные разности. По окраске выделяют разновидности кварца: горный хрусталь - бесцветный; дымчатый - серо-дымчатый, бурый; аметист - фиолетовый. Спайность весьма несовершенная. Образуется при выделении магмы, выпадает из горячих растворов и паров.

Химически устойчив при любых условиях. Халцедон SiО2 - скрытно кристаллический минерал. Образует плотные натечные массы. Цвет различный (красный или оранжевый - сердолик, полосатый - опал). Блеск восковой, матовый. Образуется при гидротермальных процессах, сопровождающих вулканическую деятельность, и в экзогенных условиях. Используется в химической, стекольной промышленностях, строительстве, оптике, радиотехнике.

Опал SiО2H2О - аморфный минерал. Содержание воды достигает 1-5% иногда 34%.

Образует плотные часто натечные массы. Слагает осадочные породы органогенного происхождения. Бесцветный, белый, серый окрашенный; блеск стеклянный. Образуется при выветривании силикатов, в результате жизнедеятельности некоторых организмов, выпадает из горячих растворов. Используется в строительстве и ювелирном деле.

Происхождение минералов класса сульфидов связано в основном с горячеводными (гидротермальными) растворами.

К классу сульфидов относятся минералы - руды металлов. В этом классе насчитывается около 200 минералов, представляющих собой соединения различных элементов с серой.

Галенит, или свинцовый блеск, Pb S, встречаются в виде кристаллических агрегатов, их сростков и отдельных агрегатов. Сингония кубическая. Цвет свинцово-серый, черта сероваточёрная, блестящая; блеск металлический непрозрачный; спайность совершенная. Сфалерит, или цинковая обманка, ZnS - встречается в виде кристаллических агрегатов, иногда сростков. Сингония кубическая. Цвет бурый, реже бесцветный; черта жёлтая, бурая; блеск алмазный, металловидный; спайность совершенная.

Пирит FeS2. Образует агрегаты разной зернистости. Цвет золотисто-жёлтый; черта чёрная, зеленовато-чёрная; блеск металлический; спайность весьма несовершенная. Используется для изготовления серной кислоты [3].

Класс сульфатов (гипс CaS0 4. 2 Н 2 О, ангидрит CaSО4, барит BaSО4) представляет собой соли серной кислоты, типичные минералы осадочных горных пород. Представители этого класса насчитывают до 260 минералов. Их характерной особенностью является способность растворяться в воде и вызывать (как и в карбонатах) развитие карстовых процессов [7].

Минералы этого класса осаждаются в поверхностных водоёмах, образуются при окислении сульфидов и серы в зонах выветривания, реже связаны с вулканической деятельностью [3].

Класс галоидных соединений. К нему относятся минералы, представляющие соли фтористо-, бромисто-, йодисто-, хлористоводородных кислот. Наиболее распространёнными являются хлориды, образующиеся при испарении вод поверхностных бассейнов. Иногда при извержении вулканов.

Галит NaCl - образует плотные кристаллические агрегаты, реже кристаллы кубической формы. Бесцветный или белый, часто окрашен в различные светлые цвета; блеск стеклянный; спайность совершенная. Гигроскопичен, солёный на вкус. Используется в пищевой промышленности, в химической для получения хлора, натрия и их производных. Сильвин КСl - по происхождению и по физическим свойствам близок к галиту, с которым часто образует единые агрегаты. Отличительным признаком является горько-солёный вкус. Используется в химической промышленности для получения калийных удобрений.

Образование фторидов связано в основном с гидротермальными, магматическими и пневматолитовыми процессами. В экзогенных условиях образуются редко. Флюорит CaF встречается в виде зернистых скоплений, отдельных кристаллов и их сростков. Сингония кубическая; цвет разнообразный, часто меняется от бесцветного к жёлтому, зелёному, фиолетовому, голубому; блеск стеклянный; спайность совершенная. Используется в металлургической, химической, керамической промышленности, в оптике.

Многие минералы этого класса растворимы в воде и придают ей повышенную минерализацию.

Класс фосфатов. Представлен большим количеством минералов (до 300), но содержание их в земной коре не превышает 1%. Наиболее распространённым минералом является апатит Са5(С1,ОН, F)[PO4]. Встречается в виде кристаллических агрегатов и отдельных кристаллов. Цвет бледно-зелёный и зеленовато-голубой, блеск стеклянный, жирный, спайность не совершенная. Происхождение магматическое. Применяется в химической промышленности и для производства удобрений.

В поверхностных условиях образуется скрытокристаллический минерал того же состава - фосфорит. Цвет серый до тёмно-бурого. Образуется в морских бассейнах в результате жизнедеятельности и последующей переработки организмов.

Минералы класса фольфраматов (вольфрамит - (FeMn)W04 и др.) не имеют породообразующего значения и в горных породах встречается крайне редко [7].

Класс самородных элементов. В этот класс входит около 50 минералов. Но встречаются они редко, их масса в земной коре не превышает 0,1% [7]. Минералы этих классов не являются породообразующими, однако многие из них являются полезными ископаемыми.

К наиболее распространённым минералам этого класса относятся сера S. Образуется в процессе поднятия (возгонки) паров при извержении вулканов, в экзогенных условиях при трансформации минералов класса сульфидов и сульфатов, а также биогенным путём. Используется в химической промышленности для производства серной кислоты, в сельском хозяйстве и других отраслях.

Образование графита (С) связано в основном с процессами метаморфизма. Графит широко применяется в металлургии, для производства электродов и т. д. К этому же классу относятся такие ценные минералы, как алмаз, золото, платина.

3.6. Горные породы Горные породы представляют естественные минеральные агрегаты, образующиеся в земной коре или на её поверхности в ходе различных геологических процессов. Основную массу горных пород слагают породообразующие минералы, состав и строение которых отражают условия образования пород. Кроме этих минералов в породах могут присутствовать и другие более редкие минералы. Название «горные породы» — условное и распространяется на все породы земной горы, независимо от места их нахождения (горы, равнины и т. д.).

В настоящее время известно более 1000 видов различных горных пород. Состав, строение и условия залегания горных пород изучает наука петрография [7].

В основу классификации горных пород положен генетический признак. По происхождению выделяют:

- магматические, или изверженные, горные породы, связанные с застыванием в различных условиях силикатного расплава магмы и лавы:

- осадочные горные породы, образующиеся на поверхности в результате деятельности различных экзогенных факторов;

- метаморфические горные породы, возникающие при переработке магматических, осадочных, а также ранее образованных метаморфических пород в глубинных условиях при воздействии высоких температур и давления, а также различных жидких и газообразных веществ, поднимающихся с глубины.

Перечисленные типы делятся на группы по условиям их залегания в земной коре (рис.

Рис. 6. Классификация горных пород по происхождению и условиям залегания С поверхности Земля на 75% сложена осадочными горными породами и на 25% магматическими и метаморфическими. Основную массу земной коры составляют магматические горные породы (около 95% её массы).

Если горная порода представляет агрегат одного минерала, она называется мономинеральной. К таким породам относятся мраморы, кварциты. Если в породу входят несколько минералов она называется полиминеральной. В качестве примера можно назвать граниты.



Pages:   || 2 | 3 | 4 | 5 |
 
Похожие работы:

«МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РФ Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования Тверской государственный университет УТВЕРЖДАЮ Декан биологического факультета Дементьева С.М. _ 2012 г. УЧЕБНО-МЕТОДИЧЕСКИЙ КОМПЛЕКС по дисциплине БОЛЬШОЙ ПРАКТИКУМ: ОДНОДОЛЬНЫЕ РАСТЕНИЯ для студентов 4 курса очной формы обучения специальность 020201.65 БИОЛОГИЯ специализация Ботаника Обсуждено на заседании кафедры Составитель: ботаники доцент, к.б.н, 2012...»

«МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ САНКТПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ, МЕХАНИКИ И ОПТИКИ А.В. Беликов, А.В. Скрипник ЛАЗЕРНЫЕ БИОМЕДИЦИНСКИЕ ТЕХНОЛОГИИ (часть 2) Учебное пособие СанктПетербург 2009 Беликов А.В., Скрипник А.В. Лазерные биомедицинские технологии (часть 2). Учебное пособие. СПб: СПбГУ ИТМО, 2009. 100 с. В учебном пособии изложены вопросы, связанные с физическими процессами, происходящими...»

«МИНИСТЕРСТВО ПРИРОДНЫХ РЕСУРСОВ РОССИЙСКОЙ ФЕДЕРАЦИИ 9 марта 1999 г. N НМ-61/1119 ГОСУДАРСТВЕННЫЙ КОМИТЕТ РОССИЙСКОЙ ФЕДЕРАЦИИ ПО ОХРАНЕ ОКРУЖАЮЩЕЙ СРЕДЫ 5 марта 1999 г. N 02-19/24-64 ПИСЬМО О МЕТОДИЧЕСКИХ УКАЗАНИЯХ ПО РАЗРАБОТКЕ НОРМАТИВОВ ПРЕДЕЛЬНО ДОПУСТИМЫХ ВРЕДНЫХ ВОЗДЕЙСТВИЙ НА ПОВЕРХНОСТНЫЕ ВОДНЫЕ ОБЪЕКТЫ МПР России и Госкомэкология России направляют согласованные с Госкомрыболовством России, Минздравом России, Росгидрометом, Миннауки России и Российской академией наук Методические...»

«Министерство образования Российской Федерации Ярославский государственный университет им П.Г. Демидова В.П. Семерной САНИТАРНАЯ ГИДРОБИОЛОГИЯ Учебное пособие по гидробиологии Издание второе, переработанное и дополненное Ярославль 2002 1 ББК Е 082я73 С 30 УДК 574.5:001.4 Семерной В.П. Санитарная гидробиология: Учеб. пособие по гидробиологии. 2е изд., перераб. и доп. Яросл. гос. ун-т. Ярославль, 2002. 147 с. ISBN 5-8397-0244-7 Данное учебное пособие написано по материалам, собранным автором к...»

«ПРИОРИТЕТНЫЙ НАЦИОНАЛЬНЫЙ ПРОЕКТ ОБРАЗОВАНИЕ РОССИЙСКИЙ УНИВЕРСИТЕТ ДРУЖБЫ НАРОДОВ В.П. ПУХЛЯНКО МЕЖДУНАРОДНЫЕ ТЕНДЕНЦИИ РАЗВИТИЯ ЭКОЛОГИЧЕСКОЙ ЭПИДЕМИОЛОГИИ Учебное пособие Москва 2008 Инновационная образовательная программа Российского университета дружбы народов Создание комплекса инновационных образовательных программ и формирование инновационной образовательной среды, позволяющих эффективно реализовывать государственные интересы РФ через систему экспорта образовательных услуг Экспертное...»

«БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ БИОЛОГИЧЕСКИЙ ФАКУЛЬТЕТ Кафедра микробиологии МИКРОБИОЛОГИЯ Методические рекомендации к лабораторным занятиям, контроль самостоятельной работы студентов Для студентов биологического факультета МИНСК 2002 УДК 579.8 + 579.232 + 579.06 ББК Авторы – составители: В.В.Лысак, Р.А.Желдакова Рецензент кандидат биологических наук, доцент Титок М.А. Микробиология: методические рекомендации к лабораторным занятиям и контроль самостоятельной работы студентов /...»

«Министерство образования Российской Федерации САНКТ – ПЕТЕРБУРГСКАЯ ГОСУДАРСТВЕННАЯ ЛЕСОТЕХНИЧЕСКАЯ АКАДЕМИЯ Л.Н.Щербакова, кандидат с.х. наук, доцент А.В.Осетров, кандидат биол. наук, доцент Е.А. Бондаренко, кандидат биол. наук, доцент ЛЕСНАЯ ЭНТОМОЛОГИЯ Учебно-методическое пособие по выполнению курсовой работы по лесной энтомологии для студентов лесохозяйственного факультета, специальность 260400, 260500. Санкт-Петербург 2006 г Рассмотрено и рекомендовано к изданию методической комиссией...»

«А.В. Грязькин, А.Ф. Потокин НЕДРЕВЕСНАЯ ПРОДУКЦИЯ ЛЕСА Учебное пособие Санкт-Петербург 2005 Министерство образования и науки Российской Федерации Федеральное агентство по образованию САНКТ-ПЕТЕРБУРГСКАЯ ГОСУДАРСТВЕННАЯ ЛЕСОТЕХНИЧЕСКАЯ АКАДЕМИЯ А.В. Грязькин, доктор биологических наук, профессор А.Ф. Потокин, кандидат биологических наук, доцент НЕДРЕВЕСНАЯ ПРОДУКЦИЯ ЛЕСА Учебное пособие для студентов лесных вузов Санкт-Петербург Рекомендовано к изданию Ученым советом лесохозяйственного...»

«ПРИОРИТЕТНЫЙ НАЦИОНАЛЬНЫЙ ПРОЕКТ ОБРАЗОВАНИЕ РОССИЙСКИЙ УНИВЕРСИТЕТ ДРУЖБЫ НАРОДОВ Н.А. ЗИНОВЬЕВА, П.М. КЛЕНОВИЦКИЙ, Е.А. ГЛАДЫРЬ, А.А. НИКИШОВ СОВРЕМЕННЫЕ МЕТОДЫ ГЕНЕТИЧЕСКОГО КОНТРОЛЯ СЕЛЕКЦИОННЫХ ПРОЦЕССОВ И СЕРТИФИКАЦИЯ ПЛЕМЕННОГО МАТЕРИАЛА В ЖИВОТНОВОДСТВЕ Учебное пособие Москва 2008 Инновационная образовательная программа Российского университета дружбы народов Создание комплекса инновационных образовательных программ и формирование инновационной образовательной среды, позволяющих...»

«ФГОС А. А. Елизаров, М. А. Калинина БИОЛОГИЯ УМК для старшей школы 10– 11 классы БАЗОВЫЙ УРОВЕНЬ Методическое пособие для учителя Москва БИНОМ. Лаборатория знаний ВВЕдЕНИЕ В данное пособие входят методические материалы к учебнометодическому комплекту (УМК) по биологии для 10–11 классов авторского коллектива под руководством Т. В. Ивановой. Материалы разработаны на основе требований к результатам освоения основной образовательной программы среднего (полного) общего образования. Предлагаемое...»

«Утверждаю Директор Р.М.Суфиянов П Р О Г РА М А по этапам спортивной подготовки ЛЫЖНЫЕ ГОНКИ Разработана на основе Федерального стандарта спортивной подготовки по виду спорта лыжные гонки (утв. приказом Минспорта РФ от 14 марта 2013 г. N 111) Государственное бюджетное учреждение города Москвы Спортивная школа олимпийского резерва Воробьевы горы Департамента физической культуры и спорта города Москвы Москва 2014 г. 1 СОДЕРЖАНИЕ Пояснительная записка.. Нормативная часть.. Методическая часть.. 2.1....»

«Основы полимеразной цепной реакции Основы полимеразной цепной реакции (ПЦР) методическое пособие Москва 2012 г. Основы полимеразной цепной реакции (ПЦР) ОТ СОСТАВИТЕЛЯ Цель пособия Основы полимеразной цепной реакции (ПЦР) – помочь овладеть навыком в постановке ПЦР. Рассмотрены стадии проведения ПЦР, способы контроля прохождения реакции, типичные ошибки интерпретации результатов. Представлены перспективы практического использования и современные тенденции развития ПЦР-диагностики. Пособие...»

«ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ Государственное образовательное учреждение высшего профессионального образования Уральский государственный университет им. А.М. Горького ИОНЦ Экология природопользования Биологический факультет Экологии кафедра МЕТОДИЧЕСКИЕ УКАЗАНИЯ ПО ИЗУЧЕНИЮ ДИСЦИПЛИНЫ ФЕНОГЕНЕТИЧЕСКИЙ АНАЛИЗ ПОПУЛЯЦИЙ Екатеринбург 2007 Составитель: проф., д.б.н. А.Г. Васильев Инновационный курс Феногенетический анализ популяций в рамках УМК магистерской программы Экология...»

«ПРИОРИТЕТНЫЙ НАЦИОНАЛЬНЫЙ ПРОЕКТ ОБРАЗОВАНИЕ РОССИЙСКИЙ УНИВЕРСИТЕТ ДРУЖБЫ НАРОДОВ А.П. ХАУСТОВ, М.М. РЕДИНА НОРМИРОВАНИЕ АНТРОПОГЕННЫХ ВОЗДЕЙСТВИЙ И ОЦЕНКИ ПРИРОДОЕМКОСТИ ТЕРРИТОРИЙ Учебное пособие Москва 2008 Инновационная образовательная программа Российского университета дружбы народов Создание комплекса инновационных образовательных программ и формирование инновационной образовательной среды, позволяющих эффективно реализовывать государственные интересы РФ через систему экспорта...»

«1 Федеральное агентство по образованию Государственное образовательное учреждение высшего профессионального образования Тихоокеанский государственный университет О. А. Мищенко БЕЗОПАСНОСТЬ ЖИЗНЕДЕЯТЕЛЬНОСТИ Утверждено издательско-библиотечным советом университета в качестве учебного пособия Хабаровск Издательство ТОГУ 2007 2 УДК 331.4 ББК Ц 99я 7 М 717 Р е ц е н з е н т ы: кафедра Безопасности жизнедеятельности Дальневосточного государственного университета путей (ДВГУПС) (зав.кафедрой, доктор...»

«Н.И.Хотько ОРГАНИЗАЦИОННЫЕ И МЕТОДИЧЕСКИЕ АСПЕКТЫ ПРОТИВОЭПИДЕМИЧЕСКОГО ОБСЛУЖИВАНИЯ НАСЕЛЕНИЯ Москва 2005 1 УДК 615.37.03/371-372-084 ОРГАНИЗАЦИОННЫЕ И МЕТОДИЧЕСКИЕ АСПЕКТЫ ПРОТИВОЭПИДЕМИЧЕСКОГО ОБСЛУЖИВАНИЯ НАСЕЛЕНИЯ РЕФЕРАТ Предлагаемая вниманию специалистов книга посвящена организационно-методическим проблемам противоэпидемического обеспечения населения. При изложении материала авторами использован опыт работы по постдипломному образованию врачей профилактической направленности. В I главе —...»

«ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ Государственное образовательное учреждение высшего профессионального образования Уральский государственный университет им. А.М. Горького ИОНЦ экология и природопользование биологический факультет экологии кафедра МОРФОЛОГИЯ И АНАТОМИЯ ВЫСШИХ РАСТЕНИЙ Учебное пособие Подпись руководителя ИОНЦ Дата Екатеринбург 2007 2 От авторов Учебное пособие является практической частью общего теоретического курса Морфология и анатомия высших растений. Оно подготовлено...»

«БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ БИОЛОГИЧЕСКИЙ ФАКУЛЬТЕТ Кафедра общей экологии и методики преподавания биологии КОНТРОЛЬ ЗНАНИЙ, УМЕНИЙ И НАВЫКОВ НА УРОКАХ БИОЛОГИИ УЧЕБНО-МЕТОДИЧЕСКОЕ ПОСОБИЕ К ЛАБОРАТОРНЫМ ЗАНЯТИЯМ ПО КУРСУ МЕТОДИКА ПРЕПОДАВАНИЯ БИОЛОГИИ Для студентов биологического факультета БГУ специальностей 1-31 01 01 Биология, 1-31 01 01-03 Биология (биотехнология), 1-33 01 01 Биоэкология МИНСК 2010 УДК 371.016:57(075.8) ББК 74.262.8я К А в т о р ы - с о с т а в и т е л и: М. Л....»

«1 МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ ГОУ ВПО КОСТРОМСКОЙ ГОСУДАРСТВЕННЫЙ ТЕХНОЛОГИЧЕСКИЙ УНИВЕРСИТЕТ ФИЗИКА ДРЕВЕСИНЫ Учебное пособие Кострома 2009 2 УДК 674.03:620.1 Рецензенты: С.А. Бородий, профессор КСХА, доктор сельскохозяйственных наук; Научно-технический совет филиала ФГУ ВНИИЛМ Костромская лесная опытная станция. Физика древесины: учебное пособие – Кострома : Изд-во КГТУ, 2009. – 75 с. В учебном пособии рассмотрен комплекс...»

«Школьные ботанические практики на побережье Баренцева моря Методическое пособие П.А. Волкова, Л.А. Абрамова, С.В. Сухов, Д.В. Сухова, А.Б. Шипунов Иллюстрации Ю.С. Быкова Рецензенты: доцент канд. биол. наук Баландин С.А., канд. биол. наук Глаголев С.М. Методическое пособие создано на основе опыта проведения полевых практик по ботанике со школьниками специализированных биологических классов на побережье Баренцева моря. Содержит оригинальные данные о ландшафтах, растительности и флоре...»






 
© 2013 www.diss.seluk.ru - «Бесплатная электронная библиотека - Авторефераты, Диссертации, Монографии, Методички, учебные программы»

Материалы этого сайта размещены для ознакомления, все права принадлежат их авторам.
Если Вы не согласны с тем, что Ваш материал размещён на этом сайте, пожалуйста, напишите нам, мы в течении 1-2 рабочих дней удалим его.