WWW.DISS.SELUK.RU

БЕСПЛАТНАЯ ЭЛЕКТРОННАЯ БИБЛИОТЕКА
(Авторефераты, диссертации, методички, учебные программы, монографии)

 

Pages:     | 1 | 2 || 4 |

«Министерство Российской Федерации по атомной энергии Департамент безопасности, экологии и чрезвычайных ситуаций Министерство здравоохранения Российской Федерации Федеральное Управление ...»

-- [ Страница 3 ] --

Расчет доз внешнего облучения по величинам плотности поверхностного загрязнения радионуклидами и объемной активности радионуклидов проводят, используя дозовые коэффициенты, связывающие дозу облучения с плотностью поверхностного загрязнения подстилающей поверхности или с объемной активностью воды водоемов, и имеющих размерности соответственно: Звм2/Бкгод и Звл/Бкгод. Для данного радионуклида дозовый коэффициент численно равен годовой эффективной дозе (Зв/год) внешнего облучения при плотности поверхностного загрязнения подстилающей поверхности данным радионуклидом равной 1 Бк/м2 или объемной активности данного радионуклида в воде водоема равной 1 Бк/л.

Для определения плотности поверхностного загрязнения территорий используют следующие способы:

- сбор оседающих аэрозолей и атмосферных осадков на специальные планшеты;

- исследование снежного покрова;

- исследование поверхностного слоя почвы и наземной растительности.

Выбор того или иного способа или их комбинации зависит от источника загрязнения территории и должен определяться местными условиями. Среди указанных следует особо отметить способ исследования снежного покрова. Он обладает рядом достоинств, к которым относятся: отсутствие влияния предыдущего загрязнения местности, простота отбора проб и относительно несложная пробоподготовка для выполнения анализов.

База нормативной документации: www.complexdoc.ru Для определения степени загрязнения водоемов отбирают и анализируют пробы воды и, в некоторых случаях, - пробы донных отложений.

Периодичность отбора проб устанавливают в зависимости от выбранного способа определения загрязнения, степени загрязнения территории (воды водоема), допускаемого времени экспозиции планшетов, периодов полураспада контролируемых нуклидов и применяемых методов их анализа.

Ориентировочно можно указать следующую периодичность пробоотбора, которую для этапа расширенных исследований следует рассматривать как минимальную. Отбор проб снега проводят, как правило, один раз в год в конце периода снегостояния, отбор проб почвы - 12 раза в год, растительности раз в год в конце периода вегетации, воды - от 2 до 4 раз в год, донных отложений - 12 раза в год.

При осуществлении контроля доз внешнего облучения по величинам эквивалентной дозы (мощности дозы) гамма-излучения возможно проведение измерений с помощью переносных дозиметров-радиометров, дозиметров интегрирующего типа и автоматических блоков детектирования, измеряющих мощность дозы гамма-излучения. Как уже отмечалось выше, в последнем случае следует предусмотреть возможность автоматической записи и хранения получаемых результатов в месте измерения или (и) их передачу для накопления, хранения и обработки в другом месте. Использование того или иного варианта проведения измерений зависит от источника и условий загрязнения, вида контролируемой территории, степени ее загрязнения и других особенностей данной местности.

Периодичность проведения измерений и время экспозиции дозиметров-накопителей определяется конкретной радиационной обстановкой.

Переход от измеряемых величин внешнего излучения к нормируемым определяется специальными методическими указаниями.

В зависимости от особенностей радиационного объекта и данной местности выбирают какой-либо один из описанных способов контроля или их комбинацию, включающую как проведение отбора проб, так и выполнение измерений.

База нормативной документации: www.complexdoc.ru 6.3.5.4 Способы и периодичность контроля за содержанием радионуклидов в пищевых продуктах, производимых в зоне наблюдения.

Рекомендации по выбору видов продуктов и радионуклидов для расширенного контроля приведены в п. 6.3.3.4. Способом контроля в данном случае является отбор проб пищевых продуктов и последующее определение выбранных радионуклидов в этих пробах.

Периодичность отбора проб зависит главным образом от вида продукта и определяемого радионуклида.

Для проб мяса сельскохозяйственных животных, водоплавающей птицы, листовых овощей, корнеплодов и клубнеплодов, фруктов, ягод частота отбора составляет, как правило, 1 раз в год. Пробы мяса сельскохозяйственных животных следует отбирать в период забоя, т.е. обычно поздней осенью, перед переводом на стойловой содержание. Пробы мяса водоплавающей птицы - в летний период, пробы овощей, корнеплодов и т.п. - непосредственно перед уборкой.

На этапе расширенных исследований пробы молока следует отбирать не реже 2 раз в год - в конце периода стойлового содержания животных и в конце периода пастбищного содержания. В зависимости от местных условий частота отбора проб может быть увеличена до 34 раз в год.

Частоту отбора проб рыбы на этапе расширенных исследований рекомендуется принять равной 2 раза в год и проводить пробоотбор весной после паводка и в середине осени.

6.3.5.5 Способы и периодичность контроля за содержанием радионуклидов в воде источников хозяйственно-питьевого водоснабжения, использующих воду поверхностных водоемов.

Способом контроля данного вида воздействия является отбор проб воды перед поступлением ее в распределительную сеть с последующим определением радионуклидов в отобранных пробах.

Периодичность отбора проб устанавливают в зависимости от содержания в воде анализируемых радионуклидов и постоянства их концентраций. В свою очередь эти показатели зависят от степени загрязнения водоема, вода которого используется данным База нормативной документации: www.complexdoc.ru источником водоснабжения, химических свойств загрязняющих радионуклидов и используемого метода водоподготовки.

На этапе расширенных исследований отбор проб рекомендуется проводить не реже 4 раз в год.

6.3.5.6 Способы и периодичность контроля за содержанием радионуклидов в подземных водах.

Рекомендации по размещению и количеству контрольных точек приведены в п. 6.3.3.6. Способом контроля является отбор проб воды с последующим определением в них радионуклидов.

Периодичность отбора проб устанавливают в зависимости от степени защищенности подземных вод от поступления в них радионуклидов, уровней фактического загрязнения и т.п. На этапе расширенных исследований отбор проб рекомендуется проводить не реже 4 раз в год.

6.3.5.7 Способы и периодичность контроля за содержанием радионуклидов в сточных водах.

Для контроля в данном случае применяют отбор проб сточных вод в местах выпусков в водоемы с последующим определением радионуклидов в отобранных пробах. Если имеется возможность отбора средних проб сточных вод, то следует отдать предпочтение этому способу пробоотбора. Период осреднения - одна-две смены, сутки и т.д. - зависит от режима удаления сточных вод, их химического состава и его постоянства, периода полураспада и химической формы удаляемых нуклидов и других особенностей удаления сточных вод.

При постоянном радионуклидном составе сточных вод, содержащих гамма-излучающие нуклиды, возможно применение непрерывного контроля с использованием автоматических приборов.

Периодичность отбора проб для анализа устанавливают в зависимости от режима удаления сточных вод, постоянства их нуклидного состава, периода полураспада сбрасываемых нуклидов, а также от степени приближения фактических концентраций радионуклидов в сточных водах к величинам контрольных уровней (к величинам рабочих концентраций радионуклидов в сбросе, РКСi). В зависимости от этих условий частота отбора проб может колебаться от ежедневной до ежемесячной.

База нормативной документации: www.complexdoc.ru В некоторых случаях, например при выявлении положительной динамики концентраций контролируемых нуклидов и при приближении их активностей в сточной воде к величинам соответствующих РКС, целесообразно организовать отбор проб и определение радионуклидов в местах удаления сточных вод из подразделений радиационного объекта в коллекторы. Такой подход позволит установить причину нарастания концентраций и в необходимых случаях принять соответствующие меры.

Если концентрации радионуклидов на выпуске сточных вод в водоем постоянно находятся на уровне РКС или (и) превышают их целесообразна организация постоянного контроля по описанной выше схеме11. В этом случае для оперативного контроля следует установить для каждого из подразделений свои величины РКС и ПКС для каждого из удаляемых нуклидов. Расчет этих величин должен основываться на условии не превышения величин ПДС (РС), установленных для соответствующего выпуска сточных вод в водоем и должен проводиться с учетом фактических расходов сточной воды, удаляемой из подразделений.

В зависимости от принятой на радиационном объекте схемы организации службы радиационной безопасности (СРБ) такой контроль должен быть возложен на соответствующее структурное звено СРБ, - отвечающее за РКОС или контролирующее производственные участки.

6.3.5.8 Способы и периодичность контроля на территориях, загрязненных в результате предыдущей деятельности радиационного объекта.

Способы и периодичность контроля за данным видом воздействия устанавливают в зависимости от возможных путей облучения, реализующихся в данном случае, по аналогии с принципами, изложенными выше для соответствующих путей облучения, обусловленных текущей деятельностью радиационного объекта (см. п. 6.3.5.16.3.5.6).

6.3.5.9 Способы и периодичность контроля на фоновых территориях.

При проведении радиационных измерений на фоновых территориях следует использовать способы определения параметров, идентичные способам определения тех же параметров База нормативной документации: www.complexdoc.ru на контролируемых территориях. Это необходимо для обеспечения сопоставимости получаемых результатов и, следовательно, для проведения корректного сравнения значений параметров, определяемых на контролируемых территориях, с фоновыми значениями этих же параметров.

Принципы выбора периодичности радиационных измерений, проводимых на фоновых территориях, аналогичны принципам выбора периодичности для тех же видов радиационных измерений, которые выполняют на контролируемых территориях.

В некоторых случаях, например, при определении объемной активности радионуклидов в атмосферном воздухе, для достоверного определения фоновых концентраций этих радионуклидов время экспозиции пробоотборных устройств может быть увеличено. Тот же подход может быть использован при определении дозы гамма-излучения с помощью дозиметровнакопителей, а также в некоторых других случаях. Если увеличение времени экспозиции пробоотборников по каким-либо причинам невозможно или нецелесообразно, для уменьшения нижнего предела определения применяемых методов анализа можно увеличить объем воздуха, прокачиваемого через сорбирующие материалы.

6.3.6 Выбор методов анализа отобранных проб В общем случае для анализа проб, отбираемых при осуществлении РКОС, могут использоваться следующие группы методов:

1. Методы, позволяющие определить в пробах содержание отдельных радионуклидов, - например, гамма-спектрометрический и альфа-спектрометрический методы анализа.

2. Методы определения суммарного содержания в пробах изотопов данного химического элемента, - например, люминесцентный метод определения урана.

3. Методы определения суммарных показателей содержания радионуклидов, - например, методы определения суммарной активности альфа- и бета-излучающих радионуклидов в пробах.

Основными характеристиками методов анализа являются:

База нормативной документации: www.complexdoc.ru - селективность, т.е. возможность определения конкретного радионуклида;

- нижний предел определения;

- диапазон определяемой величины (активности радионуклида, суммарной активности, массы);

- затраты на выполнение анализов - показатели трудоемкости анализа, стоимость и доступность реактивов и т.п.

Исходя из цели расширенных исследований, на этом этапе целесообразно в качестве основных методов анализа использовать методы первой и второй групп, позволяющие определять радионуклиды на уровне их естественного содержания в окружающей среде или содержания, обусловленного глобальным радиоактивным загрязнением.

Это необходимо для уточнения степени воздействия данного радиационного объекта на окружающую среду, определения значимости путей облучения населения, реализующихся в результате этого воздействия и последующего определения и обоснования объема радиационного контроля.

На этапе расширенных исследований целесообразно также наряду с указанными использовать методы анализа суммарных показателей. Получение такого значительного объема информации позволяет по результатам расширенных исследований подобрать такое сочетание методов анализа, которое впоследствии будет обеспечивать достижение целей РКОС при наименьших затратах.

Общие требования, регламентирующие применение методик и средств измерений при проведении РКОС, приведены в главе 7.

6.4 Проведение расширенных исследований Анализ текущей информации, получаемой при проведении расширенных исследований, должен быть направлен в первую очередь на проверку:

- правильности выбранной схемы размещения контрольных точек;

- обоснованности выбора местоположения фоновых территорий;

База нормативной документации: www.complexdoc.ru - обоснованности перечня контролируемых радионуклидов;

- целесообразности используемых способов и периодичности контроля.

В частности, для уточнения критических территорий для путей облучения П1П3 рекомендуется по мере поступления информации сравнивать показания индикаторных устройств, размещенных в контрольных точках и на других территориях. С этой же целью рекомендуется также сопоставлять данные, получаемые с помощью передвижных постов с величинами приземных концентраций, полученными на стационарных постах.

В необходимых случаях в программу расширенных исследований следует внести соответствующие изменения.

6.5 Анализ полученной информации. Уточнение характеристики радиационного объекта На основании анализа результатов расширенных исследований составляют уточненную характеристику радиационного объекта как источника воздействия на окружающую среду. Уточненная характеристика должна содержать следующие сведения:

- о путях и уровнях облучения населения, реализующихся в результате текущей и предыдущей деятельности радиационного объекта;

- о местах расположения критических территорий для каждого из видов воздействия, оказываемых текущей и предыдущей деятельностью данного радиационного объекта;

- о местах расположения критических территорий для каждого вида пищевой продукции, производимой в ЗН;

- о наиболее загрязненных источниках хозяйственно-питьевого водоснабжения отдельно для каждого из типов используемой воды (вода поверхностных водоемов, грунтовая, артезианская);

- об уровнях загрязнения объектов окружающей среды и пищевых продуктов, потребляемых населением ЗН;

- о вкладе в облучение населения ЗН и загрязнение окружающей среды каждого из радионуклидов, поступающих в окружающую База нормативной документации: www.complexdoc.ru среду в настоящее время, а также присутствующих в ней в результате предыдущей деятельности радиационного объекта;

- о местах расположения фоновых территорий для каждого из видов воздействия, оказываемых текущей и предыдущей деятельностью радиационного объекта;

а также другие сведения, характеризующие особенности распространения, накопления, миграции и трансформации радионуклидов в окружающей среде в зоне наблюдения.

6.6 Определение и обоснование объема радиационного контроля Определение и обоснование объема радиационного контроля должно проводиться на основании анализа уточненной характеристики радиационного объекта, результатов расширенных исследований и в соответствии с принципами построения РКОС, изложенными в главе 5. Объем радиационного контроля должен обеспечивать достижение целей РКОС и быть достаточным для решения задач контроля.

Для определения и обоснования объема контроля необходимо:

1. Определить перечень объектов контроля и мониторинга.

2. Составить перечень контролируемых и наблюдаемых радионуклидов.

3. Разработать схему размещения точек контроля и мониторинга.

4. Определить места расположения территорий для определения фоновых значений контролируемых и наблюдаемых параметров.

5. Выбрать способы и периодичность контроля и мониторинга.

6. Выбрать методы анализа отбираемых проб.

База нормативной документации: www.complexdoc.ru 6.6.1 Определение и обоснование перечня объектов контроля и мониторинга Определение и обоснование перечня объектов контроля и мониторинга проводят на основании анализа уточненной характеристики радиационного объекта, составленной в соответствии с рекомендациями, изложенными в разделе 6.5 с учетом всех путей облучения населения, реализующихся в результате текущей и предыдущей деятельности радиационного объекта.

Перечень объектов контроля для случая, когда в результате воздействия радиационного объекта реализуются пути облучения П1П11, приведен в таблице 2 раздела 6.3.1. Исключение из этого перечня каких-либо объектов контроля или определяемых параметров следует проводить с учетом характера и особенностей воздействия рассматриваемого радиационного объекта, выявленных при расширенных исследованиях, а также в зависимости от местных условий, сложившихся в ЗН.

Контролю и мониторингу подлежат одни и те же объекты. Задача выявления изменений в окружающей среде и составление прогноза этих изменений (функция мониторинга) в этом случае сводится к сравнению получаемых результатов радиационных измерений с результатами определения фоновых значений тех же параметров и с результатами предыдущих измерений.

При отсутствии каких-либо путей облучения и исключении вследствие этого из перечня каких-либо объектов контроля рекомендуется не исключать из объема контроля функцию мониторинга этих объектов, если при длительном их загрязнении могут возникать другие пути облучения.

Одним из примеров может служить уже обсуждавшаяся выше ситуация, когда вследствие многолетних выбросов трития происходит его накопление в почве. В этом случае путь облучения П3 отсутствует (и в соответствии с изложенными выше подходами к выбору объектов контроля почву можно исключить из перечня контролируемых объектов), но может, например, существовать вероятность возникновения пути облучения П8. Другими словами в этом случае не исключен риск дальнейшей миграции трития с грунтовыми водами в нижележащие горизонты, используемые для хозяйственно-питьевого водоснабжения. Кроме того, может сложиться ситуация, когда на данном участке территории База нормативной документации: www.complexdoc.ru организуется объект сельскохозяйственного производства, например, садово-огородные участки. Тогда появляется вероятность возникновения пути облучения П5. Проводя наблюдения за содержанием трития в почве, и имея информацию о динамике загрязнения этого объекта мониторинга, становится возможным выявить неблагоприятные тенденции изменения качества этого объекта и построить прогноз этих изменений. Этот прогноз позволит в необходимых случаях принять соответствующие управленческие решения и избежать масштабных затрат на рекультивацию земель или (и) снижение радиоактивности питьевой воды в будущем. Возможны также и другие примеры, подтверждающие целесообразность мониторинга объектов, не являющихся одновременно и объектами контроля.

Нельзя не повторить и еще один аргумент в пользу разумности подобного подхода к определению объектов контроля и мониторинга. Как правило, затраты на мониторинг при соответствующей его организации составляют небольшую долю общих затрат предприятия на радиационный контроль, а информация, получаемая при мониторинге, в большинстве случаев оказывается для предприятия весьма полезной.

В качестве общего примера, иллюстрирующего рекомендуемые принципы выбора объектов контроля и мониторинга, рассмотрим радиационный объект, в выбросах, сбросах и хранящихся отходах которого присутствуют окись трития и незначительные количества альфа-излучающих нуклидов. В этом случае будут отсутствовать пути, связанные с внешним облучением населения, - П2, П3, П7, П10. Объектами контроля в этом случае могут быть:

- атмосферный воздух (возможные пути облучения П1, П9);

- пищевые продукты (возможные пути облучения П5, П6, П11);

- сточные воды (контроль рабочей (разрешенной) мощности сброса);

- источники хозяйственно-питьевого водоснабжения, использующие воду поверхностных водоемов (возможное внутреннее облучение по соответствующим составляющим путей облучения П5 и П6);

- подземные воды (возможный путь облучения П8), База нормативной документации: www.complexdoc.ru а объектами мониторинга - перечисленные выше объекты, а также:

- почва (возможные пути облучения П5, П6, П8, П11);

- растительность (возможные пути облучения П5, П6, П11);

- снеговой покров (возможные пути облучения П5, П6, П8, П11);

- вода поверхностных водоемов (возможные пути облучения П5, П6, П8);

- донные отложения поверхностных водоемов (возможные пути облучения П6 и П8).

Решение о мониторинге объектов, не являющихся одновременно и объектами контроля (далее - дополнительных объектов наблюдений), следует принимать, исходя из результатов расширенных исследований и с учетом местных условий.

6.6.2 Определение и обоснование перечня контролируемых и наблюдаемых радионуклидов Контролю и (или) мониторингу подлежат все радионуклиды, обуславливающие загрязнение выбранных объектов, - как поступающие в окружающую среду в настоящее время, так и присутствующие в ней вследствие предыдущей деятельности данного радиационного объекта. Перечень радионуклидов, которые обуславливают загрязнение каждого из выбранных объектов контроля и мониторинга, определяют, исходя из уточненной характеристики радиационного объекта и результатов расширенных исследований.

6.6.3 Разработка и обоснование схемы размещения точек контроля и мониторинга Необходимо еще раз подчеркнуть, что для получения сопоставимых результатов рекомендуется каждый раз отбирать пробы и проводить измерения в одних и тех же местах. С этой целью, как и на этапе расширенных исследований, после выбора местоположения точек контроля и мониторинга и определения способов РКОС рекомендуется предпринять объезд выбранных мест, во время которого окончательно определить привязки к База нормативной документации: www.complexdoc.ru местным ориентирам и составить описания каждой из точек. При этом следует учитывать требования, предъявляемые к характеру местности, обусловленные выбранным способом контроля (мониторинга).

6.6.3.1 Разработка схемы размещения и определение количества точек контроля.

Схема размещения точек контроля разрабатывается на основании уточненной характеристики радиационного объекта.

Схема должна позволять осуществлять контроль за каждым из источников воздействия на окружающую среду.

Контроль следует проводить на критических территориях для каждого из видов воздействия, оказываемых текущей и предыдущей деятельностью радиационного объекта. Места расположения критических территорий устанавливаются по результатам расширенных исследований.

Количество точек контроля за дозами внутреннего облучения от ингаляционного поступления радионуклидов устанавливают в зависимости от типа критической территории (НП, часть НП, ЭО), типа источника воздействия (выбросы в воздух, миграция из мест хранения РАО) и численности жителей в НП.

Для пути облучения П1 рекомендуется следующее количество точек контроля, которое следует рассматривать как минимальное:

- в критическом ЭО - 1 точка контроля;

- в критическом НП - в зависимости от его численности:

при численности менее 10000 человек - 1 точка контроля;

при численности от 10000 до 50000 человек - 25 точек контроля;

- в критической части НП - 25 точек контроля в зависимости от:

площади, занимаемой критической частью НП;

расстояния до источников выброса;

числа жителей, проживающих в критической части;

База нормативной документации: www.complexdoc.ru других особенностей данной местности, которые могут оказать влияние на облучение населения по пути П1.

Количество и места расположения точек контроля доз внутреннего облучения по пути П9 определяют по результатам расширенных исследований.

Количество точек контроля за дозами внешнего облучения от нахождения в облаке выброса устанавливают аналогично количеству точек для пути облучения П1.

Количество точек контроля за дозами внешнего облучения от нахождения на территории, загрязненной радионуклидами устанавливают, как это описано в п. 6.3.3.3. Поскольку уточнение расположения критических территорий для данного вида воздействия проведено на этапе расширенных исследований, контроль проводят только на выбранных критических территориях.

Контроль за содержанием радионуклидов в пищевых продуктах, производимых в зоне наблюдения, проводят на критических территориях, выбранных для каждого вида производимой продукции.

Если по результатам расширенных исследований показано, что вследствие воздействия данного радиационного объекта происходит загрязнение привозных (не произведенных в ЗН) продуктов, следует также организовать контроль тех из них, которые составляют основу рациона питания жителей ЗН.

Контроль за содержанием радионуклидов в воде источников хозяйственно-питьевого водоснабжения. Проводят контроль наиболее загрязненных источников воды каждого типа (организованные водозаборы, использующие воду поверхностных водоемов, колодцы, артезианские скважины), установленных по результатам расширенных исследований.

Контроль за содержанием радионуклидов в подземных водах на территории вокруг мест хранения (захоронения) РАО. Количество точек контроля в данном случае определяется количеством наблюдательных скважин, сеть которых должна быть организована вокруг каждого из мест хранения (захоронения) РАО.

База нормативной документации: www.complexdoc.ru Контроль за содержанием радионуклидов в сточных водах.

Количество точек контроля определяется числом выпусков сточных вод в водоемы.

Контроль на территориях, загрязненных в результате предыдущей деятельности радиационного объекта. Количество точек контроля устанавливают в зависимости от путей облучения населения, реализующихся в результате данного воздействия, выявленных по результатам расширенных исследований, по аналогии с принципами, изложенными выше для путей облучения, обусловленных текущей деятельностью радиационного объекта.

6.6.3.2 Разработка схемы размещения и определение количества точек мониторинга дополнительных объектов.

Исходя из принципов выбора дополнительных объектов наблюдений (объектов мониторинга, не являющихся одновременно и объектами контроля), изложенных выше в разделе 6.6.1, такими объектами могут быть почва, растительность, снеговой покров, вода и донные отложения поверхностных водоемов. Места размещения точек мониторинга этих объектов выбирают в зависимости от вида наблюдаемого объекта по результатам расширенных исследований.

растительности.

Для оценки влияния выбросов радионуклидов наблюдения рекомендуется проводить на всей территории ЗН по равномерной сетке, а также в локальных максимумах годовых отложений радионуклидов12. Размер ячеек сети рекомендуется устанавливать от (11) до (55) км2 в зависимости от площади наблюдаемой территории и степени ее загрязнения. Возможен и другой подход, когда наблюдения могут быть организованы на различных расстояниях от источников выброса в направлении 4 или основных румбов - соответственно: С, В, Ю, З или С, СВ, В, ЮВ, Ю, ЮЗ, З, СЗ, (пробоотбор по румбической сетке), однако некоторые исследователи считают этот подход менее надежным.

Как указывалось выше, в ряде случаев, например, при выбросах трития и углерода-14, наряду с картой годовых База нормативной документации: www.complexdoc.ru отложений радионуклидов следует использовать также и карту среднегодовых приземных концентраций.

Пробы почвы и растительности следует отбирать в одних и тех же точках.

Для оценки загрязнения в результате сбросов радионуклидов в поверхностные водоемы наблюдения проводят на участках их прибрежных территорий, затапливаемых во время паводков и орошаемых водой из этих водоемов.

Места расположения точек на затапливаемых территориях выбирают в зависимости от типа загрязняемого водоема.

При сбросе в проточные водоемы точки мониторинга располагают в направлении течения реки на участке прибрежной территории от места выпуска сточных вод до границы ЗН.

В направлении вдоль реки точки располагают преимущественно у объектов водопользования, попадающих под влияние сбросов (см.

п. 6.2.2.3), в зависимости от протяженности этого участка следующим образом:

- с шагом (0,53) км вдоль реки, если протяженность наблюдаемого участка составляет менее 20 км;

- с нарастающим удалением от места сброса (например, 0,5; 3; 7;

10; 15; 25 км), если протяженность этого участка превосходит км.

В поперечном направлении точки располагают в следующих местах:

- при ширине затапливаемого участка 20 м и менее - 1 точка;

- при ширине участка 21100 м - не менее 3 точек равномерно от уреза воды;

- при ширине более 100 м - не менее 5 точек равномерно от уреза воды.

При сбросе в непроточные (слабопроточные) водоемы точки располагают на всей затапливаемой прибрежной территории вдоль береговой линии с шагом 5001000 м (в зависимости от ее протяженности и уровней загрязнения) преимущественно у База нормативной документации: www.complexdoc.ru объектов водопользования, попадающих под влияние сбросов (см.

п. 6.2.2.7):

- при ширине затапливаемого участка 20 м и менее - 1 точка;

- при ширине участка 21100 м - не менее 3 точек равномерно от уреза воды;

- при ширине более 100 м - не менее 5 точек равномерно от уреза воды.

Места расположения точек для наблюдения за загрязнением участков, орошаемых водой из загрязненных водоемов, устанавливают в зависимости от площади этих участков:

- при площади участка 1 км2 и менее - не менее 3 точек, расположенных равномерно по площади этого участка;

- при площади более 1 км2 - не менее 5 точек, расположенных равномерно по площади этого участка.

Для наблюдения за содержанием радионуклидов в снежном покрове используют те же схемы размещения точек, что и для наблюдений за загрязнением почвы и растительности вследствие выбросов радионуклидов в атмосферный воздух.

Мониторинг воды и донных отложений поверхностных водоемов.

Для наблюдения за загрязнением водоемов в результате сброса сточных вод точки мониторинга устанавливают в зависимости от типа водоема, принимающего сточные воды.

При сбросе в проточные водоемы точки располагают в направлении течения реки на участке акватории от места выпуска сточных вод до границы ЗН.

В направлении вдоль реки точки располагают преимущественно у объектов водопользования, попадающих под влияние сбросов (см.

п. 6.2.2.3), в зависимости от протяженности этого участка следующим образом:

- с шагом (0,53) км вдоль реки, если протяженность наблюдаемого участка составляет менее 20 км;

База нормативной документации: www.complexdoc.ru - с нарастающим удалением от места сброса (например, 0,5, 3, 7, 10, 15, 25 км), если протяженность этого участка превосходит км.

В поперечном направлении точки располагают в следующих местах:

- при ширине реки менее 100 м:

на расстоянии до 5 м от каждого из берегов - по одной точке;

на середине реки - не менее 1 точки;

- при ширине более 100 м:

на расстоянии до 5 м от каждого из берегов - по одной точке;

через каждые 50100 м между берегами в зависимости от ширины реки.

В некоторых случаях (например, при относительно небольшой протяженности реки, принимающей сточные воды, или при небольших значениях расходов воды в ней) более целесообразным подходом может быть организация мониторинга на участке от места выпуска сточных вод до места впадения в водоем гидрографической сети, лежащий ниже по течению. Точки наблюдений в этом случае размещают, как описано выше.

При сбросе в непроточные (слабопроточные) водоемы точки наблюдений располагают на всей их акватории в следующих местах:

- у устья реки или ручья, питающего озеро;

- на расстоянии до 5 м от берега вдоль береговой линии с шагом 5001000 м в зависимости от ее протяженности и степени загрязнения водоема преимущественно у объектов водопользования, попадающих под влияние сбросов (см. п. 6.2.2.7);

- в ряде пунктов, расположенных по нескольким радиально расходящимся створам, с постепенным удалением от места сброса.

Количество створов и точек наблюдений определяют в зависимости от площади акватории водоема, степени его загрязнения и других местных условий;

База нормативной документации: www.complexdoc.ru - у истока реки или ручья, вытекающего из озера.

При мониторинге загрязнения водоемов в результате выброса радионуклидов в атмосферный воздух рекомендуется организовать наблюдения за всеми водоемами, которые попадают под влияние выбросов данного радиационного объекта (за исключением тех, которые принимают сточные воды), используемыми населением ЗН для хозяйственных, культурнобытовых и других нужд. Перечень этих водоемов определяют при составлении предварительной характеристики радиационного объекта (см. п. 6.2.1.10, 6.2.1.13, 6.2.1.15 раздела 6.2.1).

Расположение точек мониторинга за данным видом воздействия, как и при мониторинге воздействия сбросов, зависит от типа наблюдаемого водоема.

При наблюдениях за проточными водоемами точки мониторинга располагают на участках их акваторий, ограниченных размерами ЗН, преимущественно у объектов водопользования. Количество точек в направлении вдоль реки зависит от протяженности наблюдаемого участка:

- при протяженности менее 20 км точки рекомендуется располагать с шагом (0,53) км;

- при протяженности более 20 км - с шагом (35) км.

Количество точек, располагаемых в поперечном направлении, зависит от ширины реки:

- при ширине реки менее 100 м точки располагают в следующих местах:

на расстоянии до 5 м от каждого из берегов - по одной точке;

на середине реки - не менее 1 точки;

- при ширине более 100 м:

на расстоянии до 5 м от каждого из берегов - по одной точке;

через каждые 50100 м между берегами в зависимости от ширины реки.

База нормативной документации: www.complexdoc.ru При наблюдениях за непроточными (слабопроточными) водоемами точки располагают на расстоянии до 5 м от берега вдоль всей береговой линии с шагом 5001000 м в зависимости от ее протяженности преимущественно у объектов водопользования.

6.6.4 Обоснование мест расположения территорий для определения фоновых значений контролируемых и наблюдаемых параметров Общие принципы выбора фоновых территорий, а также возможное их местоположение для некоторых типов источников подробно рассмотрены в разделе 6.3.4. Места расположения фоновых территорий устанавливаются на основании уточненной характеристики радиационного объекта по результатам расширенных исследований.

6.6.5 Обоснование способов и периодичности контроля и мониторинга Как указывалось выше, в зависимости от вида определяемых параметров способами контроля могут быть непосредственные измерения параметров в контрольных точках, отбор проб с последующим анализом, а также различные сочетания этих способов. Основным способом мониторинга дополнительных объектов, как правило, является отбор проб и определение в них наблюдаемых радионуклидов.

6.6.5.1 Способы и периодичность контроля доз внутреннего облучения от ингаляционного поступления радионуклидов.

Для проведения РКОС рекомендуется способ, основанный на расчете доз внутреннего облучения по величинам объемной активности радионуклидов в приземном слое атмосферного воздуха, применявшийся при расширенных исследованиях.

Определение объемной активности радионуклидов рекомендуется проводить аспирационным способом (см. п. 6.3.5.1) при помощи постов контроля воздуха, размещаемых в выбранных точках (см.

п. 6.6.3.1). Возможность и целесообразность применения той или иной модификации данного способа, т.е. возможность использования пробоотборников-анализаторов, тех или иных сорбирующих материалов и т.п. определяется местными условиями.

База нормативной документации: www.complexdoc.ru Периодичность смены пробоотборных устройств (время экспозиции пробоотборников) устанавливают по результатам расширенных исследований в зависимости от:

- фактической степени загрязнения воздуха (приближения измеряемых концентраций радионуклидов к величинам установленных нормативов);

- периода полураспада контролируемых радионуклидов;

- допускаемой емкости сорбирующих материалов;

- применяемых методов анализа;

- других условий, сложившихся в ЗН и могущих оказать влияние на облучение населения по путям П1 и П9.

6.6.5.2 Способы и периодичность контроля доз внешнего облучения населения от нахождения в облаке выброса.

Необходимость и целесообразность применения какого-либо из рассмотренных выше (см. п. 6.3.5.2) способов контроля за данным видом воздействия и (или) их сочетания, а также периодичность контроля определяется по результатам расширенных исследований.

6.6.5.3 Способы и периодичность контроля за дозами внешнего облучения населения от нахождения на территории, загрязненной радионуклидами.

Как и в случае организации контроля доз внешнего облучения от нахождения в облаке выброса, целесообразность применения какого-либо из рассмотренных выше (см. п. 6.3.5.3) способов контроля за данным видом воздействия и (или) их сочетания определяется результатами расширенных исследований.

Периодичность контроля устанавливают в зависимости от:

- выбранного способа контроля;

- периода полураспада контролируемых радионуклидов;

- уровней загрязнения территории (воды водоемов), определенных на этапе расширенных исследований;

База нормативной документации: www.complexdoc.ru Ориентировочно можно рекомендовать следующую периодичность пробоотбора:

- при определении плотности поверхностного загрязнения территорий:

для проб снега - один раз в год в конце периода снегостояния;

для проб почвы при отсутствии положительной динамики ее загрязнения - 1 раз в год;

для проб растительности - 1 раз в год в конце периода вегетации;

- при определении степени загрязнения водоемов:

для проб воды:

- при постоянном режиме удаления сточных вод и постоянстве концентраций радионуклидов в сточных водах - от 2 до 4 раз в год, если концентрации радионуклидов в сточных водах не превышают установленных для этих нуклидов величин РКС;

- в других случаях - в зависимости от конкретной обстановки;

для проб донных отложений (при необходимости контроля в них радионуклидов) - 12 раза в год.

6.6.5.4 Способы и периодичность контроля за содержанием радионуклидов в пищевых продуктах, производимых в зоне наблюдения.

Способом контроля за данным видом воздействия является отбор проб пищевых продуктов и последующее определение выбранных радионуклидов в этих пробах.

Рекомендуемые периодичность и сроки отбора проб мяса сельскохозяйственных животных, водоплавающей птицы, листовых овощей, корнеплодов и клубнеплодов, фруктов, ягод приведены в п. 6.3.5.4. Частоту и сроки отбора проб молока и рыбы следует установить по результатам расширенных исследований. Для долгоживущих радионуклидов, невысоких их концентраций в этих видах продуктов при отсутствии положительной динамики их загрязнения можно ориентировочно рекомендовать следующую частоту пробоотбора:

База нормативной документации: www.complexdoc.ru - для молока: не реже 2 раз в год - в конце периода стойлового содержания животных и в конце периода пастбищного содержания;

- для рыбы: 1 раз в год в конце лета.

6.6.5.5 Способы и периодичность контроля за содержанием радионуклидов в воде источников хозяйственно-питьевого водоснабжения.

Способом контроля данного вида воздействия является отбор проб воды с последующим определением в них радионуклидов.

Периодичность отбора проб устанавливают по результатам расширенных исследований в зависимости от уровней содержания в воде анализируемых радионуклидов и постоянства их концентраций. Основные причины, влияющие на изменение этих показателей, для источников водоснабжения, использующих различные типы воды, рассмотрены выше в п. 6.3.5.5, 6.3.5.6. При невысоких уровнях объемной активности радионуклидов и отсутствии положительной динамики загрязнения рекомендуется проводить отбор проб ежеквартально.

6.6.5.6 Способы и периодичность контроля за содержанием радионуклидов в подземных водах на территории вокруг мест хранения (захоронения) РАО.

Рекомендуемый способ контроля аналогичен описанному выше для питьевой воды. Периодичность отбора проб устанавливают по результатам расширенных исследований в зависимости от уровней содержания в воде хранящихся радионуклидов и постоянства их концентраций. При отсутствии в пробах анализируемых нуклидов рекомендуется отбирать пробы 4 раза в год. При обнаружении радионуклидов в пробах следует увеличить частоту отбора проб, определить причины, вызывающие загрязнение подземных вод, и принять соответствующие меры по устранению загрязнения.

6.6.5.7 Способы и периодичность контроля за содержанием радионуклидов в сточных водах.

Рекомендуемый способ контроля аналогичен применявшемуся на этапе расширенных исследований (см. п. 6.3.5.7).

Периодичность отбора проб для анализа выбирают в зависимости от установленных по результатам расширенных исследований:

- режима удаления сточных вод;

База нормативной документации: www.complexdoc.ru - постоянства их нуклидного состава;

- периода полураспада сбрасываемых нуклидов;

- степени приближения фактических концентраций радионуклидов в сточных водах к величинам контрольных уровней (к величинам рабочих концентраций радионуклидов в сбросе, РКСi).

В зависимости от этих условий частота отбора проб может колебаться от ежедневной до ежемесячной.

6.6.5.8 Способы и периодичность контроля на территориях, загрязненных в результате предыдущей деятельности радиационного объекта.

Способы и периодичность контроля за данным видом воздействия устанавливают в зависимости от реализующихся путей облучения, выявленных по результатам расширенных исследований, по аналогии с принципами, изложенными выше для соответствующих путей облучения, обусловленных текущей деятельностью радиационного объекта (см. п. 6.6.5.16.6.5.5).

6.6.5.9 Способы и периодичность мониторинга дополнительных объектов.

В качестве основного способа мониторинга объектов, не являющихся одновременно и объектами контроля, рекомендуется отбор проб и определение в них наблюдаемых радионуклидов.

Периодичность наблюдений зависит главным образом от вида наблюдаемого объекта, свойств наблюдаемых радионуклидов и динамики их концентраций в наблюдаемых объектах.

Ориентировочно можно рекомендовать следующую периодичность наблюдений и сроки отбора проб:

- для почвы, растительности и снегового покрова при мониторинге загрязнения этих объектов вследствие выбросов радионуклидов - 1 раз в год. Пробы почвы и растительности отбирают в конце периода вегетации растений (ориентировочно в конце лета - начале осени), пробы снега - в конце периода снегостояния (ориентировочно в феврале - марте в зависимости от климатических особенностей ЗН);

- для почвы и растительности при мониторинге их загрязнения вследствие сбросов радионуклидов:

База нормативной документации: www.complexdoc.ru при наблюдениях на затапливаемых территориях - 2 раза в год:

после паводка (ориентировочно в апреле - мае) и в начале осени;

при мониторинге на орошаемых территориях - 1 раз в год в конце периода ирригации (ориентировочно в конце лета - начале осени);

- для воды и донных отложений поверхностных водоемов - 2 раза в год: после паводка (ориентировочно в апреле - мае) и в начале осени.

6.6.6 Выбор методов анализа отобранных проб Основные группы методов, которые могут быть использованы при РКОС, приведены в разделе 6.3.6. На этапе расширенных исследований при анализе отобранных проб в некоторых случаях наряду с методами первой и второй групп должны использоваться методы определения суммарных показателей содержания радионуклидов.

На основании результатов, полученных при расширенных исследованиях, при определении объема РКОС следует подобрать такое сочетание групп методов анализа, которое обеспечивало бы достижение целей РКОС при наименьших затратах.

Многообразие ситуаций, обусловленных различным составом и количеством радионуклидов, поступающих в окружающую среду в результате текущей деятельности радиационных объектов и находящихся в окружающей среде вследствие их предыдущей деятельности, а также многообразие различных факторов, реализующихся в ЗН и обуславливающих особенности распространения радионуклидов в окружающей среде, затрудняет выбор универсального сочетания методов анализа, пригодных для использования на любом радиационном объекте. Ниже рассмотрен общий подход, которым рекомендуется руководствоваться при выборе оптимального сочетания методов, и некоторые характерные примеры, его поясняющие.

При выборе сочетания методов анализа рекомендуется принимать во внимание принципы построения РКОС, изложенные в главе 5, а также следующие правила.

1. Включению любого метода анализа в перечень используемых при РКОС должна предшествовать оценка соотношения «затраты на анализ/качество и объем получаемой информации» (далее затраты/качество»).

База нормативной документации: www.complexdoc.ru 2. Методы определения суммарных показателей содержания радионуклидов следует рассматривать как индикаторные, т.е.

позволяющие провести лишь ранжирование проб по загрязнению теми или иными нуклидами. Однако в ряде случаев таких оценок бывает достаточно для того, чтобы не проводить последующее определение радионуклидов в данных пробах.

3. Одновременный анализ одних и тех же проб на суммарные показатели и на содержание отдельных радионуклидов при проведении РКОС является, как правило, нецелесообразным.

Такой анализ следует применять только в случаях, когда при последующих оценках загрязнения какого-либо объекта необходимо использовать как уровни содержания отдельных нуклидов, так и суммарные показатели.

4. Для анализа проб, отбираемых с частотой 2 раза в год и реже, как правило, более целесообразно применение методов анализа первой и второй групп (см. раздел 6.3.6).

5. При определении содержания гамма-излучающих нуклидов в пробах для большинства решаемых задач оптимальным с точки зрения соотношения «затраты/качество» является гаммаспектрометрический метод анализа без химического концентрирования радионуклидов.

Одним из примеров практического использования изложенного подхода к определению оптимального сочетания различных групп методов анализа является вариант организации контроля за содержанием в атмосферном воздухе альфа-излучающих нуклидов, рассмотренный выше в разделе 5.2.2.

В качестве примера, иллюстрирующего правило 2, можно рассмотреть известную последовательность оценки качества питьевой воды, рекомендованную Всемирной организацией здравоохранения (ВОЗ). Эта последовательность с некоторыми дополнениями в сокращенном виде изложена и в п. 5.3.5 НРБ-99.

Согласно этой последовательности в случае, если достоверно известно, что в питьевой воде отсутствуют 3H, 14C, 131I, 210Pb, Ra и 232Th, соответствие питьевой воды установленным нормативам качества может быть оценено по величинам суммарной активности альфа- и бета-излучающих нуклидов. При этом если величины суммарной активности воды не превышают 0,1 Бк/кг и 1 Бк/кг соответственно для альфа- и бета-излучающих нуклидов, то вода считается пригодной и дальнейшее определение радионуклидов в воде не проводится.

База нормативной документации: www.complexdoc.ru Если в выбросах и сбросах радиационного объекта присутствует тритий, то при контроле питьевой воды предусматривают его определение наряду с определением суммарной активности альфа- и бета-излучающих нуклидов. Этот вариант организации контроля иллюстрирует изложенное выше правило 3.

6.7 Разработка Положения о системе радиационного контроля окружающей среды и графика РКОС Разработка этих документов завершает создание системы радиационного контроля окружающей среды на радиационном объекте.

Положение о системе РКОС в общем случае должно содержать:

- характеристику радиационного объекта как источника воздействия на окружающую среду, уточненную по результатам расширенных исследований (см. раздел 6.5);

- перечни объектов контроля и мониторинга;

- перечень контролируемых и наблюдаемых радионуклидов;

- перечень контролируемых и наблюдаемых параметров (величин);

- описание схемы размещения точек контроля и мониторинга;

- описание расположения территорий для определения фоновых значений контролируемых и наблюдаемых параметров;

- перечень выбранных способов и периодичности контроля и мониторинга;

- перечень применяемых методов анализа отбираемых проб с их кратким обоснованием;

- карты зоны наблюдения:

карты расчетных параметров воздействия выбросов радионуклидов, использовавшиеся при выборе соответствующих критических территорий:

База нормативной документации: www.complexdoc.ru - ожидаемых годовых эффективных доз внутреннего облучения населения от ингаляционного поступления радионуклидов, выбрасываемых всеми источниками радиационного объекта;

- ожидаемых годовых эффективных доз внешнего облучения населения от нахождения в облаке выброса, создаваемом всеми источниками радиационного объекта;

- ожидаемых годовых эффективных доз внешнего облучения населения от нахождения на следе выпадений, создаваемом выбросами всех источников радиационного объекта;

- годовых отложений каждого радионуклида, выбрасываемого всеми источниками радиационного объекта;

- среднегодовых величин приземных концентраций каждого радионуклида, выбрасываемого всеми источниками радиационного объекта;

карту с нанесенной схемой размещения точек контроля и мониторинга и фоновых территорий.

График РКОС составляется на основании Положения о системе РКОС и должен содержать перечень объектов контроля и перечень объектов мониторинга, не являющихся одновременно и объектами контроля, и следующие сведения по каждому из них:

- точки контроля;

- определяемые параметры;

- краткое описание используемых способов контроля;

- периодичность контроля.

Рекомендуемая форма графика РКОС приведена в Приложении База нормативной документации: www.complexdoc.ru 7 Общие требования, регламентирующие применение методик и средств измерений при проведении радиационного контроля окружающей среды Основной целью регламентации применения методик и средств измерений является обеспечение получения достоверных и воспроизводимых результатов РКОС для различных объектов контроля с известной погрешностью их определения.

7.1 Требования к методикам, используемым при проведении радиационного контроля 7.1.1 Для целей радиационного контроля и мониторинга могут использоваться три группы методик:

1. Методики (регламенты) радиационного контроля объектов (МРК).

2. Методики выполнения измерений величин определенными методами и средствами измерений (МВИ).

3. Методики пробоотбора (МП) и методики подготовки счетных образцов (МС).

Методики пробоотбора и методики подготовки счетных образцов применяются как приложения к соответствующим МРК и МВИ.

Для отдельных видов радиационного контроля возможно использование методик выполнения измерений при радиационном контроле объекта (МВК), объединяющих в себе указанные группы методик.

7.1.2 МРК должны применяться после их метрологической экспертизы (согласования) в государственных научных метрологических центрах РФ (ГНМЦ РФ) по профилю измерений и утверждения уполномоченным органом, регулирующим соответствующий вид радиационного контроля.

7.1.3 Используемые МВИ должны быть аттестованы в соответствии с ГОСТ Р 8.563-96 компетентной метрологической База нормативной документации: www.complexdoc.ru организацией, аккредитованной Госстандартом РФ в данной области деятельности.

7.2 Требования к применяемым средствам измерений 7.2.1 Средства измерений (СИ), используемые для РКОС, должны иметь сертификат об одобрении типа СИ Госстандарта РФ и должны быть внесены в государственный реестр СИ РФ.

7.2.2 Применяемые СИ должны в установленном порядке проходить поверку в организации, аккредитованной Госстандартом РФ в данной области деятельности.

8 Практические аспекты проведения радиационного В настоящей главе приведены рекомендации по практическому осуществлению отбора проб объектов окружающей среды, по размещению на местности пробоотборных устройств и измерительных приборов. Рассматриваются также различные технические приемы, используемые при пробоотборе.

Обсуждаемые в главе способы и технические приемы рекомендуются для применения, как при проведении контроля, так и при осуществлении мониторинга загрязнения окружающей среды, поэтому при дальнейшем изложении, если не указано иное, под понятием контроль понимается как контроль, так и мониторинг окружающей среды.

Целью данной главы является унификация способов, используемых при РКОС, для получения сопоставимых и воспроизводимых результатов контроля. Излагаемые ниже способы и технические приемы отбора проб объектов окружающей среды рекомендуются применять до издания специальных нормативных документов, регламентирующих пробоотбор этих объектов для целей радиационного контроля и мониторинга.

8.1 Общие требования к отбираемым пробам Независимо от вида объектов и свойств контролируемой среды, основным требованиям к отбираемым пробам является их представительность, т.е. способность отражать свойства данной среды в данный период времени. Известно, что с База нормативной документации: www.complexdoc.ru представительностью проб связана погрешность (неопределенность) распространения результатов измерений в контрольных точках на объект контроля в целом. При этом строгий количественный расчет данной погрешности весьма осложнен, если вообще возможен. Более распространен метод экспертных оценок.

Соблюдение требования представительности пробы в общем случае обеспечивается правильным выбором мест размещения, количества точек контроля и его периодичности, а также корректным применением способов пробоотбора. Последнее обстоятельство зависит главным образом от вида контролируемого объекта, свойств контролируемых нуклидов и задачи, решаемой при контроле за данным объектом. Ниже в соответствующих разделах рассмотрены некоторые наиболее распространенные приемы и способы отбора представительных проб.

8.2 Отбор проб воздуха Как указывалось выше, для контроля за содержанием радионуклидов в приземном слое атмосферного воздуха рекомендуется аспирационный способ отбора проб. Тип используемого сорбирующего материала зависит от формы, в которой находятся контролируемые радионуклиды.

При загрязнении воздуха аэрозолями в качестве сорбирующих материалов (СМ) обычно применяют фильтры из различных фильтрующих материалов. Наиболее часто используемым в практике материалом является фильтрующая ткань Петрянова. В случае выбросов окиси трития, можно использовать как твердые сорбенты, например цеолиты, так и жидкие поглотители, например этиленгликоль. Если тритий присутствует в воздухе в форме газа (Т2, НТ), часто применяют следующую схему: окисляют газообразный тритий до паров воды при помощи катализатора, а затем улавливают водяной пар, используя твердые или жидкие сорбенты. Применяются также схемы пробоотбора, позволяющие определять обе формы - газ и окись, - в которых может присутствовать тритий в воздухе.

Важным фактором при отборе проб воздуха является скорость его прокачки через СМ. Величину скорости прокачки следует экспериментально подобрать такой, чтобы избежать проскока улавливаемого вещества за сорбирующий материал. С этой целью База нормативной документации: www.complexdoc.ru при экспериментальной отработке схемы пробоотбора обычно используют несколько последовательно установленных сорбирующих устройств. Задание и контроль скорости прокачки обычно осуществляют с помощью ротаметров различного типа.

Кроме информации о скорости прокачки во многих случаях может быть весьма полезной информация об общем количестве воздуха, прокачанного через СМ. Для определения этой величины рекомендуется использовать интегрирующие счетчики, например, газовые. При их использовании значительно упрощается процедура расчета общего объема прокачанного воздуха и повышается достоверность этого расчета, поскольку в этом случае автоматически учитывается возможное изменение скорости прокачки, которая при длительных временах экспозиции СМ может снижаться (например, вследствие увеличения сопротивления СМ в результате сорбции атмосферной пыли).

Кроме того, при использовании счетчиков также автоматически учитываются длительность перерывов в работе поста вследствие внезапного отключения электропитания.

Другим фактором, влияющим на достоверность результатов, является конструкция и места установки постов контроля воздуха.

Основные требования в данном случае следующие.

1. Схема размещения пробоотборных устройств в посту должна исключать возможность рециркуляции воздуха, прокачанного через СМ, т.е. возможность его неоднократной прокачки.

Соблюдение данного требования обеспечивают правильной прокладкой линии выхлопа воздушного насоса, разделением пространства поста на секции, использованием направленных жалюзи и другими приемами.

2. Конструкция поста должна обеспечивать защиту применяемых СМ от прямого попадания атмосферных осадков и других неблагоприятных воздействий, определяющихся типом СМ.

3. Конструкция поста, конструкции применяемых воздухозаборных и пробоотборных устройств должны обеспечивать свободный доступ воздуха к СМ, а также должны исключать какиелибо потери отбираемых компонентов.

4. Посты следует размещать на ровных открытых площадках с твердым не пылящим покрытием, по возможности вдали от дорог и зданий, в местах с наименьшей естественной запыленностью с учетом возможности электропитания.

База нормативной документации: www.complexdoc.ru 8.3 Сбор атмосферных выпадений на специальные планшеты Для сбора атмосферных выпадений и осадков чаще всего применяют кюветы с бортиками высотой (1015 см). Дно кюветы выстилают каким-либо фиксирующим материалом (ФМ), назначение которого - удерживать аэрозольные частицы, выпадающие из воздуха. Полотно ФМ прижимают специальной рамкой. В качестве ФМ можно использовать фильтровальную бумагу, ткань Петрянова и другие материалы, способные удерживать на себе аэрозоли. При выборе типа ФМ кроме его удерживающей способности следует также принимать во внимание последующую процедуру обработки данных проб при анализе, - используемый ФМ не должен создавать трудностей при обработке и оказывать мешающее влияние при последующем определении радионуклидов.

Кюветы устанавливают на открытых местах с не пылящим покрытием на высоте (23) м от поверхности земли, желательно на специальных стойках. В некоторых случаях их можно разместить на крышах одноэтажных построек, однако в этих случаях следует принять меры, исключающие попадание в кюветы посторонних примесей с поверхности крыши.

Смену кювет проводят по возможности одновременно, в сроки, установленные графиком контроля. При отсутствии в кювете атмосферных осадков меняют только ФМ, складывая его рабочей (фиксирующей) стороной внутрь и соблюдая предосторожности, исключающие потерю осевшей пыли. При наличии в кювете дождевой или талой воды ее сливают в сосуд, ФМ осторожно переносят в другой сосуд или полиэтиленовый пакет, внутреннюю поверхность кюветы ополаскивают дистиллированной водой и протирают чистой фильтровальной бумагой. Смывы присоединяют к слитой из кюветы воде, протирочную бумагу - к ФМ, если используемый метод анализа допускает их совместную обработку.

Зимой, когда в кювете накапливается снег, его переносят в полиэтиленовый пакет, снимают ФМ и обрабатывают поверхность кюветы, как это описано выше. Существенным требованием при использовании данного способа контроля является исключение переполнения кюветы осадками, поскольку это может привести к потере информации. В соответствии с этим следует периодически отбирать часть осадков, а после окончании срока экспозиции присоединить их к основной пробе. Следует подчеркнуть, что при База нормативной документации: www.complexdoc.ru хранении отбираемых осадков должны быть исключены потери определяемых радионуклидов.

8.4 Отбор проб снега Пробы снега надлежит отбирать по возможности одновременно во всех контрольных точках. Для отбора проб следует выбирать относительно ровные площадки с равномерным слоем снега, расположенные в отдалении от проезжих дорог. В каждой из выбранных точек отбирают объединенные (средние) пробы по схеме «конверт», т.е. по углам квадрата и в его геометрическом центре. Длину стороны квадрата обычно принимают равной (1015) м. Количество объединенных проб в каждой из точек контроля устанавливают в зависимости от мощности снежного покрова и применяемых методов анализа. Точечные пробы отбирают на всю глубину снежного покрова. При отборе каждой из точечных проб ее нижний слой очищают от земли, листьев и других посторонних включений. Для учета площади пробоотбора количество точечных проб фиксируют в журнале.

Для выемки снега следует использовать пробоотборник с фиксированной площадью. Обычно используют пробоотборник в виде отрезка трубы из нержавеющей стали или сплавов на основе алюминия длиной (0,751,1) м, диаметром (1520) см, с заостренными краями, позволяющими пробивать плотные корки снега. Для того чтобы при выемке проба не высыпалась, ее уплотняют в пробоотборнике при помощи специального поршня, подобранного по диаметру трубы и вставленного в отборник.

Поршень представляет собой круглый диск, прикрепленный к стержню, длина которого должна превышать длину пробоотборника. Все пробы, отобранные в данной точке, помещают в отдельный полиэтиленовый мешок. При последующих расчетах используются значения величины площади пробоотбора и общего объема снеговой воды.

8.5 Отбор проб почвы и растительности При контроле за содержанием радионуклидов в почве и растительности чаще всего используют отбор проб по равномерной сетке, размер ячеек которой выбирают в зависимости от контролируемой территории и решаемой задачи. Внутри каждой ячейки выбирают пробоотборную площадку13. Такой подход считается более предпочтительным по сравнению с База нормативной документации: www.complexdoc.ru использованием линейной или румбической сеток по следующим основным причинам:

В литературе по почвенному мониторингу наряду с данным термином применяют также термины «пробоотборная (или пробная) площадь», «ключевая площадка», «ключ».

1. Относительная свобода в размещении пробоотборной площадки в пределах ячейки дает возможность располагать ее в местах с наиболее характерными условиями местности и исключить пробоотбор там, где он невозможен (из-за наличия домов, строений и т.п.) или нецелесообразен вследствие несоблюдения требований, предъявляемых к характеру местности, обусловленных выбранным способом контроля.

2. При данном способе пробоотбора в значительной степени облегчается последующая обработка полученных результатов применение различных методов интерполяции, построение изолиний по уровням содержания радионуклидов, а также расчет площадей загрязнения.

Выбор пробоотборных площадок, а также способ отбора проб почвы и растений также зависит от решаемой задачи. В любом случае пробоотборная площадка должна иметь описание (легенду) и привязку к местным ориентирам.

При контроле за дозами внешнего облучения от нахождения на территориях, загрязняемых воздушным путем (пути облучения П3, П10) отбор проб проводят в местах с ненарушенной поверхностью почвы при отсутствии признаков смыва или намыва поверхностного слоя почвы. Предпочтение следует отдавать задернованным участкам, избегая пробоотбора на песчаных участках, лишенных травяной растительности. Место для отбора пробы должно быть ровным, однородным, открытым. Расстояние до окружающих строений и деревьев должно составлять не менее двух их высот. Пробоотборную площадку надлежит располагать на расстояниях не менее 20 м от дорог.

На пробоотборной площадке точечные пробы почвы чаще всего отбирают по схеме «конверт». Длину стороны «конверта»

устанавливают в зависимости от размеров ячейки и пробоотборной площадки. Пробы травянистой растительности отбирают в пределах выбранного «конверта», срезая траву на высоте (25) см База нормативной документации: www.complexdoc.ru от поверхности дерна, избегая ее загрязнения почвой. Масса пробы травы зависит от свойств контролируемого нуклида и применяемого метода его анализа. Площадь, с которой отбирают траву, измеряют при помощи рулетки и фиксируют в журнале пробоотбора.

Глубина отбора проб почвы обычно составляет (25) см в зависимости от миграционной способности нуклида и периодичности пробоотбора. Площадь точечной пробы должна составлять как минимум 200 см2. В пробу должен входить и покрывающий почву дерн. Существует несколько типов инструментов для отбора проб почвы. Основными требованиями к ним являются:

- способность отбирать пробы с фиксированной площади и глубины, которые для каждой отбираемой точечной пробы должны быть постоянными;

- удобство применения;

- легкость выемки отобранного почвенного образца;

- простота очистки и дезактивации;

- долговечность.

Наиболее применяемыми инструментами являются почвенные лопатки с бортиками и пробоотборные кольца.

При контроле за дозами внешнего облучения от нахождения на территориях, загрязняемых вследствие сбросов радионуклидов (путь облучения П7), а также при мониторинге загрязнения почвы и растительности пробоотборные площадки должны размещаться на участках, характерных для контролируемых (наблюдаемых) территорий. Глубина отбора проб почвы зависит от характера хозяйственного использования территории. На необрабатываемых территориях глубина отбора обычно составляет (35) см, на обрабатываемых - определяется глубиной обработки почвы (диапазон наиболее часто рекомендуемых значений: (1525) см). В остальном порядок пробоотбора аналогичен описанному выше.

База нормативной документации: www.complexdoc.ru 8.6 Отбор проб воды и донных отложений поверхностных водоемов При наблюдениях за проточными водоемами желательно все пробы отбирать на быстротоке, избегая мест с застойной водой перед плотинами, в подпорах, на изгибах реки, в заводях, глухих рукавах и т.п. В тех случаях, когда глубина реки не превышает м, пробы отбирают только поверхностные, т.е. на глубине (0,30,5) м. На более глубоких реках пробы отбирают на разных глубинах с интервалом не менее 2 м по вертикали. Для отбора проб с различной глубины обычно используют специальные устройства.

Глубина пробоотбора на непроточных (слабопроточных) водоемах та же. Пробы воды по возможности отбирают на участках водоема, свободных от водной растительности и других предметов.

Объем и необходимость консервации отбираемых проб определяется уровнями ожидаемого загрязнения, свойствами определяемых нуклидов, применяемыми методами их анализа. Во всех случаях перед заполнением сосуда пробой его трижды ополаскивают отбираемой водой.

Донные отложения чаще всего отбирают из их поверхностного слоя. На мелководье пробы отбирают широкогорлым сосудом, в более глубоких местах используют ковшовые дночерпатели.

Простейший дночерпатель представляет собой стакан из нержавеющей стали с перфорированным дном и нижней частью стенок, закрепленный на раздвижной штанге.

Глубина пробоотбора воды и необходимость отбора донных отложений при контроле доз внешнего облучения от нахождения на акватории водоемов зависит от вида и свойств контролируемых нуклидов. В остальном используемые подходы к пробоотбору аналогичны.

8.7 Отбор проб пищевых продуктов Порядок отбора представительных проб пищевых продуктов в общем случае должен включать в себя следующие основные этапы:

1. Выделение однородной по радиационному фактору партии (см.

определение 3.47) для каждого вида отбираемого пищевого продукта (ПП).

База нормативной документации: www.complexdoc.ru 2. Определение числа необходимых для проведения контроля средних лабораторных проб (см. определение 3.53).

3. Отбор точечных проб.

4. Составление объединенных проб.

Количество средних лабораторных проб (СЛП), анализируемых при контроле содержания данного радионуклида в пищевых продуктах, зависит только от вида продукции и величины партии продуктов данного вида и характеризует данную партию продукта.

Объем (массу) СЛП для каждого вида контролируемого продукта определяют в зависимости от значений норматива допустимого содержания определяемого нуклида, установленного для этого вида продукта, предполагаемых уровней содержания контролируемого радионуклида в данном продукте и применяемого метода анализа. Объем (масса) СЛП должна быть достаточной для проведения одного анализа на содержание одного радионуклида. Если в одной СЛП возможно определение всех контролируемых нуклидов, ограничиваются анализом регламентированного для данной партии продукта количества СЛП. В противном случае количество анализируемых СЛП увеличивают в соответствии с числом определяемых радионуклидов.

Величина (масса, объем) объединенной пробы должна быть достаточной для составления СЛП, но, как правило, не больше трехкратной величины последней.

Величины точечных проб и их количество зависят от требуемой величины объединенной пробы.

При контроле содержания радионуклидов в пищевых продуктах, загрязняемых в результате воздействия радиационного объекта, выделение однородных партий ПП, определение числа необходимых СЛП, отбор точечных проб продуктов, формирование объединенных проб и составление СЛП следует проводить в соответствии с порядком, изложенным в «Методических указаниях по методам контроля. МУК 2.6.1.717-98. Стронций-90 и цезий-137.

Пищевые продукты. Отбор проб, анализ и гигиеническая оценка».

Определение величин средних лабораторных проб ПП каждого вида для анализа 90Sr и 137Cs проводят в соответствии с теми же указаниями. Для других контролируемых радионуклидов величины СЛП анализируемых продуктов устанавливают в зависимости от значений нормативов допустимого содержания определяемых База нормативной документации: www.complexdoc.ru нуклидов, предполагаемых их уровней содержания в анализируемом продукте и применяемого метода анализа.

При необходимости хранения пробы до проведения анализов следует исходить из двух основных требований. Способы консервации и хранения пробы должны исключать потерю контролируемых радионуклидов, а применяемые типы консервантов - не оказывать мешающего влияния при определении нуклидов используемыми методами анализа.

8.8 Отбор проб питьевой воды Способы отбора проб зависят от вида источника водоснабжения.

При централизованном водоснабжении рекомендуется отбирать пробы перед поступлением воды в распределительную сеть из соответствующих резервуаров водонасосных станций или из крана в устье скважины (для источников, использующих подземную воду). Пробы отбирают после слива из крана воды в количестве 5-10 объемов отбираемой пробы.

При отборе проб из колодцев используют местные водоподъемные устройства или применяют батометр.

Во всех случаях перед заполнением пробой сосуд трижды ополаскивают отбираемой водой.

Объем проб устанавливают в зависимости от ожидаемых концентраций радионуклидов и применяемых методов анализа.

Требования к способам консервации и хранения проб аналогичны таковым для пищевых продуктов.

8.9 Отбор проб подземных вод из наблюдательных скважин Наблюдательные скважины, количество которых должно быть минимальным, следует располагать, возможно, ближе к местам хранения (захоронения) РАО. Общими рекомендациями к расположению и конструкциям скважин являются следующие.

1. Скважины следует бурить ниже сооружений по направлению движения подземных вод и вскрывать ими весь первый от поверхности земли горизонт артезианских вод. В случае его отсутствия или, наоборот, большой мощности (более 30 м) скважины бурят на глубину (1015) м от наинизшего уровня грунтовых вод.

База нормативной документации: www.complexdoc.ru 2. Рекомендуется устройство дополнительной скважины выше по потоку грунтовых вод для определения фоновых значений концентраций радионуклидов.

3. Конструкция скважин должна обеспечивать их долговечную работу и исключать загрязнение подземных вод с поверхности земли.

4. Рабочий диаметр и конструкция скважины должны допускать использование прокачного и пробоотборного оборудования и необходимых измерительных приборов.

Пробы воды из наблюдательных скважин рекомендуется отбирать в следующем порядке. Перед отбором замеряют уровень воды в скважине, затем извлекают из нее на выброс (35) объемов воды, находящейся в ее стволе. После откачки пробу отбирают специальным пробоотборником (стаканом из нержавеющей стали, тефлона и т.п.), отдельным для каждой скважины.

Требования к объему отбираемых проб, их консервации и хранению аналогичны описанным выше требованиям для проб питьевой воды.

8.10 Отбор проб сточных вод При отборе проб сточной воды следует учитывать возможность неравномерного распределения примесей по слоям жидкости, поэтому пробы рекомендуется отбирать в месте наибольшего течения. Если сточная вода вытекает через отверстие или водослив, пробу отбирают, как правило, непосредственно из падающей струи. Чаще всего пробы отбирают пробоотборником, который представляет собой стакан из прочного коррозионноустойчивого материала (полиэтилен, тефлон, нержавеющая сталь и т.п.), закрепленный на раздвижной штанге. Для каждого из выпусков следует иметь отдельные пробоотборники. Перед отбором пробоотборник и сосуд для транспортировки пробы трижды ополаскивают отбираемой водой.

Объем проб устанавливают в зависимости от ожидаемых концентраций радионуклидов и применяемых методов анализа.

Требования к способам консервации и хранения проб аналогичны описанным выше требованиям для проб питьевой воды.

База нормативной документации: www.complexdoc.ru 9 Организация радиационного контроля на реконструируемых и вновь строящихся радиационных Организация радиационного контроля окружающей среды на территории зоны наблюдения реконструируемого и вновь строящегося радиационного объекта имеет некоторые особенности. Они обусловлены действием следующих основных причин:

- возможным наличием некоторого переходного периода между пуском объекта и выходом его на проектную мощность;

- наличием или отсутствием радиоактивного загрязнения местности, обусловленного предыдущей деятельностью реконструируемого радиационного объекта или (для вновь строящихся объектов) воздействием других объектов, включая радиационные.

Организация системы радиационного контроля и объем радиационного контроля окружающей среды должны быть отражены в разделе «Радиационный контроль» проекта строительства или реконструкции. При этом объем контроля должен предусматривать средства и методы контроля в условиях переходного режима эксплуатации, в течение которого возможно поступление радионуклидов в окружающую среду в количествах, могущих превышать установленные величины плановых выбросов и сбросов.

После выхода объекта на проектную мощность рекомендуется провести его радиационно-техническое обследование. Целью этого обследования должен быть сбор информации о характере и особенностях всех источников воздействия данного объекта на окружающую среду - выбросах в атмосферный воздух, сбросах в открытую гидрографическую сеть, местах хранения (захоронения) РАО и т.п.



Pages:     | 1 | 2 || 4 |
 
Похожие работы:

«Филиал государственного образовательного учреждения высшего профессионального образования Сибирский государственный университет путей сообщения Томский техникум железнодорожного транспорта (ТТЖТ – филиал СГУПС) Москалева О. В. Охрана труда Методические указания и контрольные задания Для студентов заочной формы обучения всех специальностей Томск 2010 Одобрено Утверждаю на заседании цикловой комиссии Заместитель директора по УМР Протокол № _ от _ 2010 г. Н.Н. Куделькина Председатель: _ С.Ф. Савко...»

«Приложение 5 Образцы библиографического описания Книга одного автора Житенев А. А. Поэзия неомодернизма / А. А. Житенев. — Санкт-Петербург : ИНАПРЕСС, 2012. — 450 с. Померанцева Н. Картины и образы Древнего Египта / Наталия Померанцева. — Москва : Галарт, 2012. — 583 с. : ил. Петров О. В. Риторика : учебник / О. В. Петров. — Москва : Проспект, 2004. — 423 с. Сухов А. Н. Социальная психология безопасности : учебное пособие для вузов / А. Н. Сухов. – 2-е изд., стер. – Москва : Academia, 2004. –...»

«МЕТОДИЧЕСКИЕ УКАЗАНИЯ ПО ВЫПОЛНЕНИЮ РАЗДЕЛА БЕЗОПАСНОСТЬ ЖИЗНЕДЕЯТЕЛЬНОСТИ В ДИПЛОМНЫХ ПРОЕКТАХ СПЕЦИАЛЬНОСТИ 190701 ОРГАНИЗАЦИЯ ПЕРЕВОЗОК И УПРАВЛЕНИЕ НА ТРАНСПОРТЕ Омск 2011 1 Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования Сибирская государственная автомобильно-дорожная академия (СибАДИ) Кафедра Техносферная безопасность МЕТОДИЧЕСКИЕ УКАЗАНИЯ ПО ВЫПОЛНЕНИЮ РАЗДЕЛА БЕЗОПАСНОСТЬ...»

«Расистские и Неонацистские Символы в Футболе Учебное пособие для Стюардов и Служб безопасности Футбол против расизма в Европе Введение В рамках программы Объединение против расизма УЕФА ЕВРО 2008 было поручено разработать и распространить учебное пособие для сотрудников, работающих на стадионах в период проведения матчей УЕФА ЕВРО 2008, которое включало бы рекомендации по идентификации расистских символов и борьбе с проявлениями расизма. Целью создания учебного пособия является повышение...»

«ИНСТИТУТ КВАНТОВОЙ МЕДИЦИНЫ ПРОИЗВОДСТВЕННО-КОНСТРУКТОРСКОЕ ПРЕДПРИЯТИЕ ГУМАНИТАРНЫХ ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ (МИЛТА-ПКП ГИТ) Б.А. Пашков БИОФИЗИЧЕСКИЕ ОСНОВЫ КВАНТОВОЙ МЕДИЦИНЫ Методическое пособие к курсам по квантовой медицине Москва 2004 Б.А. Пашков. Биофизические основы квантовой медицины. /Методическое пособие к курсам по квантовой медицине. Изд. 2-е испр. и дополн.– М.: ЗАО МИЛТАПКП ГИТ, 2004. – 116 с. Кратко описана история развития квантово-волновой теории электромагнитных колебаний....»

«МЕТОДИЧЕСКИЕ УКАЗАНИЯ по выдаче специальных разрешений (лицензий) на виды деятельности, связанные с обеспечением безопасности объектов котлонадзора и подъемных сооружений РД-10-49-94 УТВЕРЖДЕНЫ постановлением Госгортехнадзора России от 31.01.94 N 6 1. ОБЩИЕ ПОЛОЖЕНИЯ 1.1. Настоящие Методические указания разработаны в соответствии с пунктами 2.1 и 2.7 Положения о порядке выдачи специальных разрешений (лицензий) на виды деятельности, связанные с повышенной опасностью промышленных производств...»

«Федеральное агентство по образованию Государственное образовательное учреждение высшего профессионального образования ИВАНОВСКАЯ ГОСУДАРСТВЕННАЯ ТЕКСТИЛЬНАЯ АКАДЕМИЯ (ИГТА) Кафедра безопасности жизнедеятельности МЕТОДИЧЕСКИЕ УКАЗАНИЯ К КОНТРОЛЬНОЙ РАБОТЕ ПО КУРСУ ЗАЩИТА НАСЕЛЕНИЯ И ТЕРРИТОРИЙ В ЧРЕЗВЫЧАЙНЫХ СИТУАЦИЯХ для студентов всех специальностей заочной формы обучения Иваново 2004 Методические указания предназначены для студентов заочной формы обучения, изучающих дисциплину Защита...»

«Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования Амурский государственный университет Кафедра Безопасность жизнедеятельности УЧЕБНО-МЕТОДИЧЕСКИЙ КОМПЛЕКС ДИСЦИПЛИНЫ ТОКСИКОЛОГИЯ Федерального государственного образовательного стандарта ВПО по направлению 280700.62 Техносферная безопасность, утвержденного приказом № 723 Министерством образования и науки РФ от 14 декабря 2009 г. Благовещенск...»

«Министерство образования и науки Российской Федерации Федеральное агентство по образованию РФ Владивостокский государственный университет экономики и сервиса _ О.Н. ПОЛЫНИНА ОРГАНИЗАЦИЯ ДОРОЖНОГО ДВИЖЕНИЯ Учебная программа курса по специальности 19070265 Организация безопасности движения Владивосток Издательство ВГУЭС 2008 1 ББК 11712 Учебная программа по дисциплине Организация дорожного движения составлена в соответствии с требованиями ГОС ВПО РФ. Предназначена студентам специальности 19070265...»

«МИНОБРНАУКИ РОССИИ Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования Ухтинский государственный технический университет (УГТУ) АТТЕСТАЦИЯ РАБОЧИХ МЕСТ Методические указания к выполнению контрольных заданий по дисциплине Аттестация рабочих мест для студентов заочной формы обучения направления подготовки 280700 Техносферная безопасность Ухта 2013 УДК 331.45 А 94 Афанасьева, И. В. Аттестация рабочих мест [Текст] : метод. указания к выполнению...»

«ПРАВОВОЕ ОБЕСПЕЧЕНИЕ ИНФОРМАЦИОННОЙ БЕЗОПАСНОСТИ Тамбов ИЗДАТЕЛЬСТВО ГОУ ВПО ТГТУ 2010 Министерство образования и науки Российской Федерации Государственное образовательное учреждение высшего профессионального образования Тамбовский государственный технический университет ПРАВОВОЕ ОБЕСПЕЧЕНИЕ ИНФОРМАЦИОННОЙ БЕЗОПАСНОСТИ Методические указания для студентов 4 курса специальностей 075500 (090105), 010502 (080801), 071900 (230201), 030501 всех форм обучения Тамбов Издательство ГОУ ВПО ТГТУ УДК...»

«Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования Амурский государственный университет Кафедра безопасности жизнедеятельности УЧЕБНО-МЕТОДИЧЕСКИЙ КОМПЛЕКС ДИСЦИПЛИНЫ ПРИРОДОПОЛЬЗОВАНИЕ Основной образовательной программы по специальностям: 080109.65 Бухгалтерский учет, анализ и аудит, 280101.65 Безопасность жизнедеятельности в техносфере. Благовещенск 2012 2 Содержание 1 Рабочая программа...»

«МИНИСТЕРСТВО РОССИЙСКОЙ ФЕДЕРАЦИИ ПО ДЕЛАМ ГРАЖДАНСКОЙ ОБОРОНЫ, ЧРЕЗВЫЧАЙНЫМ СИТУАЦИЯМ И ЛИКВИДАЦИИ ПОСЛЕДСТВИЙ СТИХИЙНЫХ БЕДСТВИЙ ДЕПАРТАМЕНТ ГРАЖДАНСКОЙ ЗАЩИТЫ МЧС РОССИИ УЧЕБНО МЕТОДИЧЕСКОЕ ПОСОБИЕ ПО ПОВЫШЕНИЮ КВАЛИФИКАЦИИ РУКОВОДИТЕЛЕЙ ОРГАНИЗАЦИЙ ПО ВОПРОСАМ ГО, ЗАЩИТЫ ОТ ЧС, ПОЖАРНОЙ БЕЗОПАСНОСТИ И БЕЗОПАСНОСТИ НА ВОДНЫХ ОБЪЕКТАХ В УЦ ФПС Москва Учебно методическое пособие по повышению квалификации руководителей организаций по вопросам ГО, защиты от ЧС,...»

«МГОУ Безопасность жизнедеятельности (Безопасность жизнедеятельности в области горного производства) Учебное методическое пособие для студентов специальности 130402, 130403, 130404, 130405, 130404.6, 130406, 150402, 3305500 Безопасность технологических процессов и производств 1 Ю.В. Михайлов, В.Н. Морозов, В.Н. Татаринов МГОУ, 2008 2 Министерство образования и науки Российской Федерации ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ОТКРЫТЫЙ УНИВЕРСИТЕТ Кафедра Горной экологии и...»

«Министерство образования Украины Харьковский национальный университет МЕТОДИЧЕСКИЕ УКАЗАНИЯ ПО ОПРЕДЕЛЕНИЮ ОСНОВНЫХ ПАРАМЕТРОВ ИОННО-ФОТОННОЙ ЭМИССИИ МЕТАЛЛОВ Харьков 2003 2 1.УКАЗАНИЕ МЕР БЕЗОПАСНОСТИ К работе на установке по исследованию основных параметров ионно-фотонной эмиссии допускается персонал, аттестованный по Правилам технической эксплуатации электроустановок потребителей и правилам технической безопасности при эксплуатации электроустановок потребителями и имеющий по электрической...»

«ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ Государственное образовательное учреждение высшего профессионального образования Уральский государственный университет им. А.М. Горького ИОНЦ Экология и природопользование Химический факультет Кафедра аналитической химии ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ Методы разделения и концентрирования в анализе объектов окружающей среды Методические указания по изучению дисциплины Подпись руководителя ИОНЦ Радченко Т.А. 2008 г. Екатеринбург 2008 Дисциплина...»

«МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования Тверской государственный университет УТВЕРЖДАЮ Декан математического факультета _Цирулёв А.Н. _2011 г. Учебно-методический комплекс по дисциплине ”Информатика”. Для студентов 1-го курса. Специальность 090102.65 ”Компьютерная безопасность”. Форма обучения очная. Обсуждено на заседании кафедры Составитель: 1 сентября 2011 г. доцент кафедры КБ...»

«Министерство образования и науки Российской Федерации Омский государственный университет им. Ф.М. Достоевского Факультет компьютерных наук Кафедра информационной безопасности С.В. Усов ДИСКРЕТНАЯ МАТЕМАТИКА УЧЕБНО-МЕТОДИЧЕСКОЕ ПОСОБИЕ ДЛЯ СТУДЕНТОВ НАПРАВЛЕНИЯ ИНФОРМАТИКА И ВЫЧИСЛИТЕЛЬНАЯ ТЕХНИКА Омск 2011 УДК 510+519 ББК 22.176я73 У 760 Рецензент: к.т.н. Лавров Д.Н. Усов С.В. Дискретная математика. Учебно-методическое пособие для У 760 студентов направления Информатика и вычислительная...»

«САНКТ-ПЕТЕРБУРГСКАЯ ГОСУДАРСТВЕННАЯ ЛЕСОТЕХНИЧЕСКАЯ АКАДЕМИЯ БЕЗОПАСНОСТЬ ЖИЗНЕДЕЯТЕЛЬНОСТИ Методические указания к практическим занятиям для студентов ГЛТА Составитель: кандидат технических наук, доцент Л.Ф. Унывалова Санкт-Петербург 2009 2 ОГЛАВЛЕНИЕ Стр. 1. Идентификация и квантификация опасности. 3 2. Анализ производственного травматизма по Актам о несчастном слу- 13 чае на производстве (апостеорный анализ). 3. Обеспечение требований безопасности при эксплуатации подъемно- транспортного...»

«ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССОНАЛЬНОГО ОБРАЗОВАНИЯ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ – УЧЕБНОНАУЧНО-ПРОИЗВОДСТВЕННЫЙ КОМПЛЕКС УЧЕБНО-НАУЧНО-ИССЛЕДОВАТЕЛЬСКИЙ ИНСТИТУТ ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ Кафедра Электроника, вычислительная техника и информационная безопасность Лобанова В. А. ПЕДАГОГИЧЕСКАЯ ПРАКТИКА Программа и методические указания по прохождению Направление и технология – 211000.68 Конструирование электронных средств Орел Автор: к.т.н., проф....»










 
© 2013 www.diss.seluk.ru - «Бесплатная электронная библиотека - Авторефераты, Диссертации, Монографии, Методички, учебные программы»

Материалы этого сайта размещены для ознакомления, все права принадлежат их авторам.
Если Вы не согласны с тем, что Ваш материал размещён на этом сайте, пожалуйста, напишите нам, мы в течении 1-2 рабочих дней удалим его.