WWW.DISS.SELUK.RU

БЕСПЛАТНАЯ ЭЛЕКТРОННАЯ БИБЛИОТЕКА
(Авторефераты, диссертации, методички, учебные программы, монографии)

 

Распределение дробных частей значений многочлена аргумент, которого принимает значения из коротких интервалов

На правах рукописи

Озодбекова Наджмия Бекназаровна

Распределение дробных частей значений многочлена

аргумент, которого принимает значения из коротких

интервалов

01.01.06 - Математическая логика, алгебра и теория чисел

Автореферат

диссертации на соискание ученой степени

кандидата физико-математических наук

Душанбе – 2012 2

Работа выполнена в Институте математики Академии наук Республики Таджикистан

Научный руководитель: доктор физико–математических наук, член-корреспондент АН РТ Рахмонов Зарулло Хусенович

Официальные оппоненты: Гриценко Сергей Алексендрович доктор физико-математических наук, профессор, Белгородский государственный университет, заведующий кафедрой алгебры, теории чисел и геометрии Чариев Умидилла кандидат физико–математических наук, Таджикский педагогический университет им. С.Айни, доцент кафедры алгебры и теории чисел,

Ведущая организация: Таджикский национальный университет

Защита состоится 31 октября 2012 г. в 11 ч. 00 мин. на заседании диссертационного совета К 047.007.01 при Институте математики Академии наук Республики Таджикистан (734063, г.Душанбе, ул. Айни 299/4).

С диссертацией можно ознакомится в библиотеке Института математики АН РТ.

Автореферат разослан 28 сентября 2012 г.

Ученый секретарь диссертационного совета Каримов У.Х.

Общая характеристика работы

Актуальность темы. Основным предметом исследования настоящей диссертации являются изучение поведения тригонометрических сумм Г.Вейля, переменное суммирование которых принимает значения из интервала малой длины, а также их применения к задаче распределения дробных частей значений многочлена аргумент, которого принимает значения из коротких интервалов.

Тригонометрической суммой называется конечная сумма S вида S= e(F (x1, x2,..., xr )) (1) где F (x1, x2,..., xr ) вещественная функция от r переменных и суммирование ведется по целым точкам (x1, x2,..., xr ) некоторой области n – мерного пространства. Основной проблемой при изучении сумм S является проблема установления верхней границы модуля S. Обозначим через T количество целых точек области. Так как модуль каждого слагаемого суммы (1) равен 1, то для |S| имеем тривиальную оценку |S| T, причем знак равенства здесь имеет место тогда и только тогда, когда все значения функции F (x1, x2,..., xr ) имеют одну и ту же дробную часть.

Однако для весьма широких классов функций F (x1, x2,..., xr ) и совокупностей оказывается возможным установить для |S| верхнюю границу, несравнимо более точную, чем указанная тривиальная, а именно границу вида |S| T, где с возрастанием числа целых точек области и возможным одновременным изменением вида функции F (x1, x2,..., xr ) стремится к нулю. Этот множитель, отличающий такую границу от тривиальной, называется понижающим множителем.

Впервые тригонометрические суммы появились у Гаусса в одном из его доказательств закона взаимности квадратичных вычетов. Суммы, которые изучал Гаусс, имели вид (суммы Гаусса) q ax Гаусс полностью решил проблему поведения |S| и он дал точные выражения для |S|. Сумма Гаусса является частным случаем более общей полной рациональной тригонометрической суммы где В случае простого q = p, p – простое число, Морделл1 дал для этой суммы оценку которую А. Вейль2, следуя одной идее Хассе3, заменил следующей:

Оценка А. Вейля в смысле порядка роста (при постоянном n) с возрастанием p, вообще говоря, неулучшаема можно указать неограниченное число случаев, когда модуль суммы будет не меньше чем p. Наилучшую оценку суммы (2) в случае составного q дал Хуа4. Он установил неравенство Это неравенство замечательно тем, что при постоянном n в смысле порядка роста правой части с возрастанием q оно, вообще говоря, уже не может быть заменено существенно лучшим. В.Н.Чубариков5 в 1976 г. получил оценки модуля кратной рациональной тригонометрической суммы.

Рациональная тригонометрическая сумма входит как частный случай в еще более общий класс сумм вида Mordel L.J. On a sum analogous ta o Gauss’s sum.Quart.J.Math. 3(1932), 161- Weyl A. Foundations of algebraic geometry, Amer.Math.Soc.Colloquim Pub., 29 (1947).

Hasse H. Abstracte Begrnting der komplexen Multiplication und Riemannsche Vermutung in Funktlonenkrpern, Abh.math.Sem.Univ.Hamburg, 10 (1934), 325-348.

Hua L.K. Метод тригонометрических сумм и его применения в теории в теории чисел. – М.: Мир, 1964,–190с.

Чубариков В.Н. О кратных рациональных тригонометрических суммах и кратных интегралах // Мат.заметки, 1976, Т.20, №1, с.61-68.

где f (x) = n xn +... + 1 x, и n,..., 1 любые вещественные числа. Первый общий метод нахождения нетривиальных оценок сумм (3) дал Г. Вейль6, задолго до упомянутых результатов Морделла и Хуа. Поэтому этим суммам присвоено название суммы Г.Вейля. Существенным недостатком оценки Г.Вейля является быстрая потеря ее точности с возрастанием n. Тем не менее эта оценка сыграла заметную роль в развитии теории чисел: она позволила дать первые, хотя и далеко не совершенные решения ряда важных проблем этой области математики.

Одной из таких проблем явилась проблема распределения дробных частей значений многочлена f (t) = n tn +... + 1 t. Отметим также, что проблема распределения дробных частей значений многочлена f (t) явилась одной из первых общих проблем математики, для своего решения потребовавшей создание метода тригонометрических сумм. Эта проблема тесно связана в свою очередь с понятием равномерного распределения по модулю, равному единице. Понятие равномерного распределения значений числовых последовательностей на отрезке также ввел в математику Г.

Вейль. Он доказал критерий равномерного распределения значений числовой последовательности на отрезке.

В 1934 г. И. М. Виноградов7 нашел новый метод в аналитической теории чисел. Этот метод не только позволил коренным образом усовершенствовать решения проблем, уже рассматривавшихся ранее с помощью других методов, но и открыл широкий путь к решению новых. Первым результатом, полученным новым методом (1934 г.), явилась принципиально новая верхняя граница для функции G(n) в проблеме Варинга, G(n) наименьшее значение r, при котором все целые N, начиная с некоторого N0, представляются в виде Следующим результатом, полученным новым методом, явились принципиально новые оценки сумм Г. Вейля (1935 г.). Основу этих оценок составила “теорема о среднем И.М. Виноградова”.

Отметим, что оценками тригонометрических сумм Г.Вейля по методу И.М. Виноградова занимался также Хуа Ло-ген. В частности, он в явной форме выделил оценку среднего значения тригонометрической суммы из Weyl H. Uber die Gleichverteilung von Zahlen mod. Eins // Math. Ann, 1916, 77, s.313–352.

Виноградов И.М. Избранные труды. – М.: Изд-во АН СССР, общего метода оценки индивидуальных тригонометрических сумм. В году Ю.В.Линником8 было найдено доказательство теоремы о среднем значении, использующее свойства сравнений по модулю степеней простого числа p. Другое p – адическое доказательство, то есть использующее свойства сравнений по модулю простого числа p, теоремы о среднем значении было получено А.А.Карацубой9 на основе разработанного им в шестидесятых годах двадцатого века нового p–адического метода И.М.Виноградов поставил проблему оценки сверху кратных тригонометрических сумм. Данная задача была решена Г.И.Архиповым10 в начале 70-х годов прошлого века. Г.И.Архипов получил первые оценки двукратных сумм Вейля для многочленов общего вида. В 1975г. Г.И.Архипов и В.Н.Чубариков11 дали обобщение результатов Г.И.Архипова на кратный случай. В 1976г. В.Н.Чубариков12 получил оценки кратных тригонометрических интегралов и кратных полных рациональных тригонометрических сумм. В течение 80-х годов прошлого столетия Г.И.Архипов, А.А.Карацуба и В.Н.Чубариков13 продолжили исследования и получили первые оценки кратных тригонометрических сумм Вейля, равномерные по всем параметрам (по длинам интервалов изменения переменных суммирования, по степени осреднения и по степени многочлена). В 1987 г.

результаты всех исследований по кратным тригонометрическим суммам Вейля составили содержание монографии “Теория кратных тригонометрических сумм” 14. В середине 80-х годов прошлого века В.Н.Чубариков получил первые оценки кратных тригонометрических сумм с простыми числами с многочленом общего вида в экспоненте 15.

Линник Ю В. Оценки сумм Вейля // ДАН СССР, 1942, Т.34, №7, c. 201-203.

Карацуба А.А. Проблема Варинга для сравнения по модулю, равному степени простого числа // Вестник МГУ, 1962, Сер.1, №1, с.28-38.

Архипов Г.И.Оценки двойных тригонометрических сумм // Труды МИАН им. В.А. Стеклова АН СССР, 1976, Т. 142, с. 46-66.

СССР.Сер.мат., 1976, Т.40, с.209-220.

Чубариков В.Н. О кратных рациональных тригонометрических суммах и кратных интегралах // Мат.заметки, 1976, Т.20, №1, с.61-68.

Архипов Г.И.,Карацуба А.А., Чубариков В.Н. Кратные тригонометрические суммы и их приложения // Изв.АН СССР.Сер.мат., 1980, Т.44, с.723-781.

Архипов Г.И., Карацуба А.А., Чубариков В.Н. Теория кратных тригонометрических сумм.

–М.: Наука, 1987, –368с.

Чубариков В.Н. Оценки кратных тригонометрических сумм с простыми числами // Изв. АН СССР, Сер. мат., 1985, Т.49, №5. с. 1031-1067.

Английский математик Р.Вон,16 изучая суммы Г.Вейля вида методом Ван дер Корпута, доказал:

При условии, что очень хорошо приближается рациональным числом со знаменателем q, то есть при выполнении условии он также доказал:

Поведение коротких тригонометрических сумм Г.Вейля вида

Похожие работы:

«Шинкевич Сергей Александрович ИССЛЕДОВАНИЕ ПРОЦЕССОВ ВЗАИМОДЕЙСТВИЯ ЭЛЕМЕНТАРНЫХ ЧАСТИЦ ВО ВНЕШНИХ ПОЛЯХ И СРЕДАХ МЕТОДОМ ТОЧНЫХ РЕШЕНИЙ Специальность 01.04.02 – теоретическая физика Автореферат диссертации на соискание ученой степени кандидата физико-математических наук Москва 2007 Работа выполнена на кафедре теоретической физики физического факультета Московского государственного университета им. М. В. Ломоносова. Научный руководитель : Доктор физико-математических наук,...»

«Терехова Лидия Павловна Версии почти наверное предельных теорем для случайных сумм 01.01.05 теория вероятностей и математическая статистика АВТОРЕФЕРАТ диссертации на соискание ученой степени кандидата физико-математических наук Казань 2010 Работа выполнена в отделе теории вероятностей и математической статистики Научно–исследовательского института математики и механики имени Н.Г. Чеботарева Казанского государственного университета. Научный руководитель : доктор...»

«ГОЛУБЦОВА Анастасия Андреевна Точные решения в теориях гравитации и супергравитации и сохраняющиеся суперсимметрии Специальность 01.04.02 — теоретическая физика Автореферат диссертации на соискание ученой степени кандидата физико-математических наук Москва — 2013 Работа выполнена в Учебно-научном институте гравитации и космологии Российского университета дружбы народов. Научный руководитель : доктор физ.-мат. наук, Иващук Владимир Дмитриевич Официальные оппоненты : доктор...»

«КОМАРОВА Галина Александровна ГЕЛИ С ВКЛЮЧЕННЫМИ ЭМУЛЬСИЯМИ Специальность 02.00.06 высокомолекулярные соединения Автореферат диссертации на соискание ученой степени кандидата физико-математических наук Москва– 2007 www.sp-department.ru Работа выполнена на кафедре физики полимеров и кристаллов физического факультета Московского Государственного Университета им. М. В. Ломоносова. Научный руководитель : доктор химических наук Стародубцев Сергей Геннадьевич. Официальные оппоненты...»

«Шведунов Иван Васильевич ПРОГРАММНОЕ ОБЕСПЕЧЕНИЕ СИСТЕМЫ КОНТРОЛЯ И УПРАВЛЕНИЯ УСКОРИТЕЛЯМИ ЭЛЕКТРОНОВ НИИЯФ МГУ Специальность 01.04.20 – Физика пучков заряженных частиц и ускорительная техника Автореферат диссертации на соискание ученой степени кандидата физико-математических наук Москва – 2009 Работа выполнена на кафедре общей ядерной физики...»

«ОБЛЕКОВ ГЕННАДИЙ ИВАНОВИЧ ГЕОЛОГИЧЕСКОЕ ОБОСНОВАНИЕ ТЕХНОЛОГИЙ УПРАВЛЕНИЯ РАЗРАБОТКОЙ УНИКАЛЬНЫХ ГАЗОВЫХ И ГАЗОКОНДЕНСАТНЫХ МЕСТОРОЖДЕНИЙ ЗАПАДНО-СИБИРСКОЙ НЕФТЕГАЗОНОСНОЙ ПРОВИНЦИИ 25.00.12 – геология, поиски и разведка горючих ископаемых АВТОРЕФЕРАТ диссертации на соискание ученой степени доктора геолого-минералогических наук НОВОСИБИРСК 2009 Работа выполнена в ООО Газпром добыча Надым ОАО Газпром Научный консультант : доктор геолого-минералогических наук Лапердин Алексей...»

«КЛАДЬКО ВАСИЛИЙ ПЕТРОВИЧ УДК: Б39.26 - 548.731 ЗАВИСИМОСТЬ РАССЕЯНИЯ РЕНТГЕНОВСКОГО ТОРМОЗНОГО ИЗЛУЧЕНИЯ ОТ СТРУКТУРНОГО СОВЕРШЕНСТВА МОНОКРИСТАЛЛОВ БИНАРНЫХ И ТРОЙНЫХ СОЕДИНЕНИЙ. Специальность 01.04.07 - физика твердого тела Автореферат диссертации на соискание ученой степени кандидата фнзико-математических наук Киев - 1986 г. Работа выполнена в Институте полупроводников АН УССР...»

«ЖВАНИЯ ИРИНА АЛЕКСАНДРОВНА ГЕНЕРАЦИЯ ЖЕСТКОГО РЕНТГЕНОВСКОГО ИЗЛУЧЕНИЯ И ОПТИЧЕСКИХ ГАРМОНИК ПРИ ВОЗДЕЙСТВИИ ИНТЕНСИВНОГО ЛАЗЕРНОГО ИЗЛУЧЕНИЯ НА МОДИФИЦИРОВАННЫЕ ТВЕРДОТЕЛЬНЫЕ МИШЕНИ И КЛАСТЕРНЫЕ ПУЧКИ Специальность 01.04.21 – лазерная физика автореферат диссертации на соискание ученой степени кандидата физико-математических наук МОСКВА – 2014 Работа выполнена на кафедре общей физики и волновых процессов физического факультета Московского государственного университета имени...»

«Шомполова Ольга Игоревна Оптимальное управление линейными системами с нерегулярными смешанными ограничениями и определение геометрии оптимальной траектории Специальность 05.13.01 – Системный анализ, управление и обработка информации (промышленность) АВТОРЕФЕРАТ диссертации на соискание ученой степени кандидата физико-математических наук Москва - 2012 РАБОТА ВЫПОЛНЕНА В ФЕДЕРАЛЬНОМ ГОСУДАРСТВЕННОМ БЮДЖЕТНОМ УЧРЕЖДЕНИИ НАУКИ ВЫЧИСЛИТЕЛЬНЫЙ ЦЕНТР ИМ. А.А. ДОРОДНИЦЫНА РОССИЙСКОЙ...»

«ГУСЕВА Дарья Викторовна КОМПЬЮТЕРНОЕ МОДЕЛИРОВАНИЕ ПОЛИМЕРНЫХ СИСТЕМ С ПРОТЕКАЮЩИМИ МАКРОМОЛЕКУЛЯРНЫМИ РЕАКЦИЯМИ Специальности 02.00.06 высокомолекулярные соединения, 01.04.07 – физика конденсированного состояния Автореферат диссертации на соискание ученой степени кандидата физико-математических наук Москва – 2012 www.separtment.ru Работа выполнена на кафедре физики полимеров и кристаллов физического факультета Московского Государственного Университета имени М. В. Ломоносова....»

«Наймушина Екатерина Александровна. УДК 538.945 ПРИМЕНЕНИЕ МЕТОДА РЕНТГЕНОЭЛЕКТРОННОЙ СПЕКТРОСКОПИИ ДЛЯ ИССЛЕДОВАНИЯ ХИМИЧЕСКОГО СТРОЕНИЯ СЛОЖНЫХ МЕДНЫХ ОКСИДОВ В СВЕРХПРОВОДЯЩЕМ СОСТОЯНИИ Специальность 01.04.01. – приборы и методы экспериментальной физики АВТОРЕФЕРАТ диссертации на соискание ученой степени кандидата физико-математических наук Ижевск – 2004 Работа выполнена в лаборатории электронной спектроскопии Института физики поверхности при Удмуртском государственном...»

«Туэрди Умайэр Резонансное одно- и двухфотонное взаимодействие света с экситонами в квантовых точках CdSe/ZnS Специальность: 01.04.10 – физика полупроводников АВТОРЕФЕРАТ диссертации на соискание ученой степени кандидата физико-математических наук Москва - 2008 Работа выполнена на кафедре физики полупроводников Физического факультета Московского Государственного Университета им. М.В. Ломоносова. Научный руководитель : доктор физико-математических наук, доцент Е.А. Жуков...»

«Ломова Наталья Валентиновна УДК 538.945 ПРИМЕНЕНИЕ МЕТОДА РЕНТГЕНОЭЛЕКТРОННОЙ СПЕКТРОСКОПИИ ДЛЯ ИССЛЕДОВАНИЯ СПИНОВОГО МАГНИТНОГО МОМЕНТА АТОМОВ В СИСТЕМАХ НА ОСНОВЕ ЖЕЛЕЗА Специальность 01.04.01. – Приборы и методы экспериментальной физики АВТОРЕФЕРАТ диссертации на соискание ученой степени кандидата физико-математических наук Ижевск – 2007 Работа выполнена в Государственном образовательном учреждении высшего профессионального образования Удмуртский государственный...»

«Федотов Илья Валерьевич Микроструктурированные световоды для генерации перестраиваемых по частоте сверхкоротких лазерных импульсов и элементов волоконно-оптических сенсоров Специальность 01.04.21 — лазерная физика АВТОРЕФЕРАТ диссертации на соискание ученой степени кандидата физико-математических наук Москва 2011 Работа выполнена на кафедре общей физики и волновых процессов физического факультета Московского государственного университета имени М.В.Ломоносова Научный...»

«УДК 004.896 АКСЕНОВ Константин Александрович ТЕОРИЯ И ПРАКТИКА ПОДДЕРЖКИ ПРИНЯТИЯ РЕШЕНИЙ В ОБЛАСТИ ПРОЦЕССОВ ПРЕОБРАЗОВАНИЯ РЕСУРСОВ Специальность 05.13.01 – Системный анализ, управление и обработка информации Автореферат диссертации на соискание ученой степени доктора технических наук Екатеринбург – 2011 Работа выполнена на кафедре автоматизированных систем управления ФГАОУ ВПО Уральский федеральный университет имени первого Президента России Б.Н.Ельцина. Научный...»

«САВЧЕНКО Евгений Матвеевич ВЫСОКОСКОРОСТНЫЕ ОПЕРАЦИОННЫЕ УСИЛИТЕЛИ С ТОКОВОЙ ОБРАТНОЙ СВЯЗЬЮ И ВЫСОКИМ УРОВНЕМ ДИНАМИЧЕСКОЙ ТОЧНОСТИ Специальность: 05.27.01 Твердотельная электроника, радиоэлектронные компоненты, микрои наноэлектроника, приборы на квантовых эффектах АВТОРЕФЕРАТ диссертации на соискание ученой степени кандидата технических наук Москва 2011 1 Работа выполнена в Федеральном государственном унитарном предприятии Научно-производственное предприятие Пульсар....»

«ГИЗАТУЛЛИН Булат Ильдарович ОСОБЕННОСТИ МОЛЕКУЛЯРНОЙ ПОДВИЖНОСТИ И ФАЗОВЫХ ПЕРЕХОДОВ ЖИДКОСТЕЙ АДСОРБИРОВАННЫХ НА ПОВЕРХНОСТИ ПОРИСТЫХ СТЕКОЛ VYCOR Специальность 01.04.07 – физика конденсированного состояния Автореферат диссертации на соискание ученой степени кандидата физико-математических наук Казань 2013 2 Работа выполнена на кафедре...»

«МИТРОХИН Владимир Павлович Микро- и наноструктуры для нелинейно-оптических преобразований сверхкоротких лазерных импульсов и спектроскопии когерентного антистоксова рассеяния света Специальность 01.04.21 — лазерная физика АВТОРЕФЕРАТ диссертации на соискание ученой степени кандидата физико-математических наук Москва — 2010 Работа выполнена на кафедре общей физики и волновых процессов физического факультета Московского государственного университета имени М.В.Ломоносова Научный...»

«СТАРЦЕВ Юрий Кузьмич РЕЛАКСАЦИОННЫЕ ЯВЛЕНИЯ В СТЕКЛАХ В ИНТЕРВАЛЕ СТЕКЛОВАНИЯ ПРИ ОТЖИГЕ, ИОННОМ ОБМЕНЕ СТЕКЛА С РАСПЛАВОМ СОЛИ И В СПАЯХ Специальность: 01.04.07 - Физика конденсированного состояния. Автореферат диссертации на соискание ученой степени доктора физико-математических наук С.-Петербург 2002 г. 2 Работа выполнена в Институте химии силикатов им.И.В.Гребенщикова Российской Академии наук. Научный консультант : заслуж. деятель науки и техники, доктор технических наук,...»

«Гоголь Феликс Витальевич ДИНАМИКА ЦЕНТРОВ ДЕЙСТВИЯ АТМОСФЕРЫ ПЕРВОГО ЕСТЕСТВЕННОГО СИНОПТИЧЕСКОГО РАЙОНА И ИХ ВЛИЯНИЕ НА ИЗМЕНЕНИЯ КЛИМАТА РЕСПУБЛИКИ ТАТАРСТАН В ЗИМНИЙ ПЕРИОД Специальность 25.00.30 – метеорология, климатология, агрометеорология АВТОРЕФЕРАТ диссертации на соискание ученой степени кандидата географических наук Казань – 2010 Работа выполнена на кафедре метеорологии, климатологии и экологии атмосферы в ГОУ ВПО Казанский государственный университет им....»






 
© 2013 www.diss.seluk.ru - «Бесплатная электронная библиотека - Авторефераты, Диссертации, Монографии, Методички, учебные программы»

Материалы этого сайта размещены для ознакомления, все права принадлежат их авторам.
Если Вы не согласны с тем, что Ваш материал размещён на этом сайте, пожалуйста, напишите нам, мы в течении 1-2 рабочих дней удалим его.