WWW.DISS.SELUK.RU

БЕСПЛАТНАЯ ЭЛЕКТРОННАЯ БИБЛИОТЕКА
(Авторефераты, диссертации, методички, учебные программы, монографии)

 

О корректной разрешимости несамосопряженных смешанных задач для уравнения колебаний мембраны

На правах рукописи

Махмадуллоев Зафар Насуллоевич

О КОРРЕКТНОЙ РАЗРЕШИМОСТИ

НЕСАМОСОПРЯЖЕННЫХ СМЕШАННЫХ ЗАДАЧ

ДЛЯ УРАВНЕНИЯ КОЛЕБАНИЙ МЕМБРАНЫ

01.01.02 - Дифференциальные уравнения, динамические

системы, оптимальное управление

Автореферат

диссертации на соискание ученой степени кандидата физико-математических наук

Душанбе – 2012 2

Работа выполнена в Таджикском государственном университете коммерции

Научный руководитель: доктор физико–математических наук, профессор Исмати Мухаммаджон

Официальные оппоненты: Курбонов Икром - доктор физикоматематических наук,член корреспондент АН РТ, профессор, Российско -Таджикский(Славянский) университет, заведующий кафедрой математики и ЕНД Шарипов Бобоали - кандидат физикоматематических наук,доцент,Институт предпринимательстваи сервиса,доцент кафедры математики в экономике

Ведущая организация: Курган - Тюбинский государственный университет имени Н. Хусрава

Защита состоится 4 апреля 2012 г. в 11ч. 00 мин. на заседании диссертационного совета ДМ 047.007.01 при Институте математики Академии наук Республики Таджикистан по адресу: 734063, г.Душанбе, ул. Айни 299/4.

С диссертацией можно ознакомиться в библиотеке Института математики Академии наук Республики Таджикистан.

Автореферат разослан " " марта 2012 г.

Ученый секретарь диссертационного совета Халилов Ш.Б.

Общая характеристика работы

Актуальность темы. Диссертационная работа посвящена проблемам абсолютной и равномерной сходимости разложений по собственным функциям одной нелокальной (несамосопряжнной) краевой задачи и корректной разрее шимости несамосопряжнных (нелокальных) смешанных задач для уравнения е колебаний мембраны.

Разложение по собственным функциям дифференциальных операторов является одним из известных методов решения смешанных задач математической физики. Проблемам суммируемости и сходимости разложений по собственным функциям самосопряжнных дифференциальных операторов пое священы работы В.А. Стеклова (1901), Н.М. Гюнтера (1934), С.Л. Соболева (1945), Ю.М. Березанского (1965), В.А. Ильина (1955-1968), Е.И. Моисеева (1976), М.А. Красносельского, Е.И. Пустыльника (1958), О.А. Ладыженской (1950-1958), Б.М. Левитана (1950-1955), А.Я. Повзнера (1953), Э.Ч. Титчмарша (1960-1961), К. Фридрихса (1947), Г. Вейля (1915), Т. Икебе (1967) И.К.





Кенджаева (1967,1968), М. Исмати (1970-1992гг) и других авторов.

Методу Фурье для общего гиперболического и волнового уравнения за последние четыре десятилетия посвящено большое число работ. Среды них мы отметим лишь работы Х.Л. Смолицкого (1949), О.А. Ладыженской (1950), и В.А. Ильина (1957-1960). Наиболее точные условия существования классического решения смешанных задач для общего гиперболического уравнения установил В.А. Ильин (1960) для произвольной нормальной1 области.

Однако исследованию этих проблем для несамосопряжнных дифферене циальных операторов посвящено сравнительно мало работ и эти проблемы далеки от своего полного разрешения. Это, прежде всего, относится и к спектральному разложению несамосопряжнных операторов. Хотя и относителье но этой проблемы также появилось достаточно много работ (см. например, работы Я.Д. Тамаркина (1917), В.А. Ильина (1976, 1983,1986), М.В. Келдыша (1951), В.Б. Лидского (1962), М.Г. Крейна, И.Ц. Гохберга (1965), М.А.

Наймарка (1969), А.Г. Рамма (1970), Н.И. Ионкина (1977,1979), М. Исмати и имеющуюся там библиографию).

Выдающимся вкладом в науку являются работы В.А. Ильина по спектральной теории несамосопряжнных дифференциальных операторов, вые полненные им, начиная с 1975г. Этим работам предшествовали известные работы М.В. Келдыша, в которых для широкого класса краевых задач установлен факт полноты специально построенной системы собственных и присоединнных функций дифференциального оператора ( такую систему Келдыш е назвал канонической). Следовательно, вышеупомянутые проблемы являются Области называется нормальной, если для этой области разрешима задачи Дирихле для уравнения Лапласа при любой непрерывной граничной функции актуальными.

Цель работы.Целью данной работы является установление корректной разрешимости несамосопряжнных (нелокальных) смешанных задач для уравнения колебаний мембраны.

Методика исследований. В работе используются методы разложения функций по собственным и присоединнным (корневым) функциям несамосое пряжнных (нелокальных) краевых задач для уравнения колебаний мембрае ны (метод Фурье), современные методы уравнений в частных производных и функционального анализа.

Научная новизна. Основные результаты диссертации являются новыми и заключается в следующем:

1. Найдена биортогональная система собственных и присоединнных функе ций рассматриваемой эллиптической нелокальной краевой задачи. Показано, что эта система не только образует базис в пространстве, но и образует базис Рисса. Найдено выражение для формального решения несамосопряжнных е смешанных задач для однородного и неоднородного уравнений колебаний мембраны.





2. Дано обоснование метода Фурье для классического решения несамосопряжнной смешанной задачи и сопряжнной к ней задачи. Доказано сущее е ствование и единственность классического решения смешанной задачи.

3. Найдены априорные оценки в различных нормах, из которых, в частности, следует устойчивость, а следовательно, и корректная разрешимость рассматриваемых задач.

Практическая и теоретическая ценность работы. Работа носит теоретический характер. Результаты диссертации могут быть использованы при решении соответствующих задач физики плазмы, в общей теории кратных ортогональных и тригонометрических рядов, теории самосопряжнных и несае мосопряжнных дифференциальных операторов.

Апробация работы. Результаты диссертации докладывались на ежегодных конференциях Таджикского государственного университета коммерции, Института предпринимательства и сервиса, на научных семинарах Института предпринимательства и сервиса под руководством профессора М. Исмати;

на научном семинаре Таджикского национального университета под руководством профессора М.К. Юнуси, на международной конференции, посвященной 60-летию со дня образования Таджикского национального госуниверситета (апрель-май) 2009 года.

Публикации. Основные результаты диссертации опубликованы в 7 научных работах, список которых приведен в конце автореферата.

Структура и объм работы. Диссертация состоит из введения, двух глав и списка литературы, включающего 77 наименований. Объм диссертае ции составляет 107 страницы компьютерного набора.

Во введении дается краткая историческая справка рассматриваемых вопросов, обосновывается актуальность темы и приводится краткое содержание диссертации с указанием основных результатов.

В первой главе доказывается существование классических в смысле В.А.

Ильина решений несамосопряжнных (нелокальных) смешанных задач для уравнения колебаний мембраны.

В первом параграфе первой главы дается определение обобщенной производной, пространства Соболева W2 с целыми l и теоремы вложения.

Этот параграф носит вспомогательный характер. Однако основные результаты диссертации сформулированы именно в терминах пространства Соболева с целыми порядками частных производных l.

В втором параграфе первой главы дается постановка следующей нелокальной (несамосопряжнной) задачи:

U (x, y, 0) = (x, y), Ut (x, y, 0) = (x, y), (x, y) R R; R = [0; 1] U (x, 0, t) = 0, Uy (x, 0, t) = Uy (x, 1, t), x [0; 1], t [0, T ] Рассмотрим следующую редукцию этой задачи:

где V (x, y, t) и w(x, y, t) являются решениями смешанной задачи (1.2.1) при f (x, y, t) = 0 и ненулевых начальных функций и при f (x, y, t) = 0 (x, y) = 0, (x, y) = 0 соответственно. Задача (1.2.1) является нелокальной смешанной задачей. Кроме того, она является несамосопряжнной задачей в силу граничных условий.

В третьем параграфе первой главы для двухмерной квадратной области R2 = R R = (0; 1) (0; 1) находится последовательность собственных и присоединнных функций нелокальной (несамосопряжнными) задачи для уравнения Лапласа и сопряжнной к нему задачи (Мы сохраняем во введении те же самые номера формул, как в самих главах 1 и 2 диссертации). Отметим, что всюду в рассматриваемой диссертации мы сформулируем основные результаты для основного квадрата R2 = (0; 1) (0; 1), однако перенесение их для произвольного квадрата Ra = [0; a] [0; a] или прямоугольника Ra,b = [0; a] [0; b] не предоставляет трудности. А в этом параграфе мы приводим некоторые результаты из работы [24]. Сперва отметим, что смешанные задачи (1.2.6) и (1.2.7) при n = 2 (вместе с t) впервые были рассмотрены в работе [24] М. Исмати. Кроме того, смешанные задачи вида (1.2.6) и (1.2.7) для уравнения теплопроводности при n = 1 и n = 2 соответственно были рассмотрены и подробно исследованы в работах Н.И.Ионкина [21] и Н.М.Исматова.

Известно [24], что собственные значения и собственные функции задачи (1.2.6) имеют вид Последовательность собственных функций (1.2.8) не образует ортогональную систему и эта последовательность не образует полную систему и базис в пространстве L2 (R R). С этой целью, следуя работе В.А. Ильина [15], дадим следующее Определение 1. Под собственной функцией задачи (1.2.6), отвечающей собственному значению, понимается не равная тождественно нулю функция (x, y), которая принадлежит классу C 1 () C 2 (), = R R и является регулярным решением задачи (1.2.6).

Аналогично, под присоединнной функцией порядка p(p = 1, 2,...), отвее чающей тому же и собственной функции (x, y), понимается вещественная функция (x, y), которая принадлежит классу C 1 () C 2 () и с точностью до ненулевого постоянного множителя Р является регулярным решением уравнения и удовлетворяет граничным условиям задачи (1.2.6) (явный вид постоянной Р указывается ниже). Известно [24], что задача (1.2.6) имеет следующие присоединнные функции:

где k,m, k,m, k,m, k,m соответственно удовлетворяют уравнениям Отметим, что при k, m = 0, то есть при = 0,0 = 0 и P = 0 (например, при P = 1) присоединнная функция 0,0 (x, y) не существует. Систему всех собственных и присоединенных функций задачи (1.2.6) переобозначим следующим образом:

При этом видно, что при k, m > 0 каждому собственному значению k,m соответствует одна собственная и три присоединнные функции.

Собственные значения и система собственных и присоединнных функций сопряженной задачи (1.2.7) имеют вид:

0,0 = 0,0 = 0, k,m = k,m = (2k)2 + (2m)2, Z0,0 (x, y) = 2 · 2, 2k1,2m1 (x, y) = 4 cos 2kx4 cos 2my = Z2k1,2m Z2k,2m1 (x, y) = 4(1 x) sin 2kx4 cos 2my = Zk,m Z2k1,2m (x, y) = 4 cos 2kx4(1 y) sin 2my = Z k,m Z2k,2m (x, y) = 4(1 x) sin 2kx · 4(1 y) sin 2my =Z k,m, где присоединнные функции Zk,m = Z2k,2m1, Zk,m = Z2k1,2m, Z k,m = Z2k,2m соответственно удовлетворяют следующим уравнениям:

и граничным условиям задачи (1.2.7). Имеет место Лемма. Последовательность собственных и присоединнных функций зае дачи (1.2.6) и сопряжнной к ней задачи (1.2.7) образует биортогональную систему функции в L2 (QT ). Имеет место Теорема. Последовательность собственных и присоединнных функции {k,m (x, y)}k,m=0, определенная по формулам (1.3.4), образует базис в пространстве L2 (QT ) и для (x, y) L2 (QT ) имеют место неравенства где c = 0.9, C = 272, то есть последовательности функций k,m=0 и {Zk,m (x, y)}k,m=0 образуют базис Рисса в пространстве L2 (QT ).

В четвертом параграфе первой главы методом Фурье для решения смешанной задачи (1.2.1) при f (x, y, t) = 0 найдено следующее выражение:

где 2k1,2m1 = ((x, y), Z2k1,2m1 ), 2k1,2m1 = ((x, y), -коэффициенты биортогонального разложения начальных функций (x, y) и (x, y) по биортогональной системе Zkm (x, y).

Следуя [15], дадим следующее определение.

Определение. Функцию V (x, y, t) из класса C 1 (QT ) C 2 (QT ) назовем классическим решением смешанной задачи (1.2.1), если:

1.она удовлетворяет внутри области QT однородному уравнению колебаний мембраны;

2. удовлетворяет начальным и граничным условиям задачи (1.2.1) в обычном классическом смысле.

Пятый параграф первой главы посвящается обоснованию метода Фурье для классического, в смысле В.А. Ильина, решения смешанной задачи (1.2.3) для однородного уравнения колебаний мембраны. Основным результатом этого параграфа является Теорема 1.5.1. Пусть начальные функции несамосопряженной смешанной задачи (1.2.1) удовлетворяют следующим условиям:

1. Функция (x, y) имеет в прямоугольнике R = [0, 1][0, 1] непрерывные производные до третьего порядка,интегрируемые с квадратом производные четвертого порядка и функции и удовлетворяют краевым условиям задачи (1.2.1) в обычном смысле.

2. Функция (x, y) имеет непрерывные производные до второго порядка,интегрируемые с квадратом производные третьего порядка в R и, удовлетворяют краевым условиям задачи (1.2.1). Тогда для любого отрезка времени t [0, T ] сумма биортогонального ряда (1.4.44) дает классическое, в смысле В.А. Ильина, решение смешанной задачи (1.2.1). При этом ряд (1.4.44) и ряды Vt, Vtt (i = 1, 2), полученные из него однократным и двукратным почленным дифференцированием по t, сходятся абсолютно и равномерно во всей замкнутой области R [0, T ] = QT. Кроме того, ряды, полученные из (1.4.44) двукратным почленным дифференцированием Vxi,t, Vxi,xj (i, j = 1, 2), сходятся абсолютно и равномерно в любой строго внутренней подобласти QT QT при t > 0.

В шестом параграфе первой главы находится формальное решение несамосопряженной смешанной задачи (1.2.4). Это решение имеет вид Здесь же доказано существование классической в смысле В. А. Ильина смешанной задачи (1.2.4).

Теорема 1.6.1. Пусть плотность вынуждающих сил f (x, y, t) удовлетворяет следующим условиям:

1. функции f (x, y, t) имеет в области GT = R R [0, T ] непрерывные частные производные до второго порядка,интегрируемые с квадратом производных третьего порядка, 2. она такова, что функции f (x, y, t), f (x, y, t) для всех t [0, T ] и (x, y) R R по переменным x и y удовлетворяют граничным условиям задачи (1.2.4). Тогда ряд (1.6.22) и ряды, полученные из него однократным и двукратным почленным дифференцированием по t, сходятся абсолютно и равномерно в замкнутой области QT = R R, а ряды, полученные двукратным почленным дифференцированием по любым переменным x, y, и t, сходятся абсолютно и равномерно в любой подобласти QT = (0, T ] области QT при всех t > 0. При этом сумма ряда (1.6.22)определяет классическое решение смешанной задачи (1.2.4) в смысле В.А. Ильина.

Замечание 1.6.1. Условия 1) и 2) теоремы 1.6.1. могут быть обобщены следующим образом: Достаточно потребовать, чтобы f W2 2 (QT ) и по x удовлетворяла соответствующему краевому условию в обобщенном смысле (т.е. в среднем). Аналогично обобщаются и условия, наложенные на функции и теоремы 1.5.1.

В седьмом параграфе первой главы дается обоснование метода Фурье для классического, в смысле В.А. Ильина, решения несамосопряжнной е смешанной задачи (1.2.1).

Методом Фурье для решения смешанной задачи (1.2.1) получим следующее выражение где V (x, y, t) и w(x, y, t) соответственно определяются по формулам (1.4.44) и (1.6.22).

Основным результатом этого параграфа является Теорема 1.7.1. Пусть начальные функции (x, y) и (x, y) и правая часть f (x, y, t) задачи (1.2.1) соответственно удовлетворяют условиям теорем 1.5.1 и 1.6.1. Тогда ряд (1.7.1) и ряды, полученные из него однократным и двукратным почленным дифференцированием по t, сходятся абсолютно и равномерно в замкнутой области T = (0, T ], = R R, а ряды, полученные двукратным почленным дифференцированием по любым переменным x, y и t, сходятся абсолютно и равномерно в любой подобласти QT (0, T ] области QT при всех t > 0. При этом сумма ряда (1.7.1) U (x, y, t) определяет классическое решение несамосопряжнной смешанной задачи (1.2.1) в смысле В.А. Ильина.

В восьмом параграфе первой главы найдено формальное решение сопряженной к задаче (1.2.3) смешанной задачи (1.8.1).

Решение задачи (1.8.1) дается формулой (1.8.36).

В пункте 1.8.2 доказывается существование классического решения сопряженной смешанной задачи (1.8.1).А именно, имеет место Теорема 1.8.2. Пусть в задаче (1.8.1) функции (x, y) и (x, y) удовлетворяют следующим двум условиям:

1. (x, y) в области = R R обладает непрерывными производными до третьего порядка и интегрируемые с квадратом производные четвертого порядка и такова, что функции, в классическом смысле удовлетворяют граничным условиям задачи (1.8.1).

2. (x, y) в области = R R обладает непрерывными производными до второго порядка включительно и такова, что функции,, в классическом смысле удовлетворяют граничным условиям задачи (1.8.1) Тогда ряд (1.8.36) дает классическое решение смешанной задачи(1.8.1) В девятом параграфе первой главы найдено выражение для формального решения смешанной задачи (1.9.1).

Здесь же в теореме 1.9.1 дано обоснование метода Фурье для классического решения смешанной задачи (1.9.1). А именно,имеет место Теорема 1.9.1. Пусть функция f (x, y, t) удовлетворяет следующим условиям:

1. функции f (x, y, t) имеет в области GT = R R [0, T ] непрерывные частные производные до второго порядка 2. она такова, что функции f (x, y, t), f (x, y, t), для всех t [0, T ] и (x, y) R R по переменным x и y удовлетворяет граничным условиям задачи (1.9.1). Тогда ряд (1.9.14) и ряды, полученные из него однократным и двукратным почленным дифференцированием по t, сходятся абсолютно и равномерно в замкнутой области Q = R R [0, T ], а ряды, полученые двукратным почленным дифференцированием по любым переменным x, y и t сходятся абсолютно и равномерно в любой подобласти QT области QT = R R [0, T ] при всех t > 0. При этом сумма ряда (1.9.14) определяет классическое решение смешанной задачи (1.9.1) в смысле В. А. Ильина Наконец, в десятом параграфе первой главы найдено формальное решение общей сопряжнной задачи и дано обоснование метода Фурье для классического решения этой задачи (Теорема 1.10.1). В пункте 10.1 первой главы найдено выражение для решения смешанной задачи 1.2.4 при f (x, y, t) = f (x, y) В второй главе диссертации доказана единственность классического решения рассматриваемых задач и получены некоторые априорные оценки в нормах пространства L2 и W2. Из этих оценок, в частности, следует устойчивость решения и, в конечном итоге, корректная разрешимость рассматриваемых задач.

В первом параграфе второй главы доказана единственность классического решения смешанной задачи (2.1.1). А именно, имеет место Теорема 2.1.1. Пусть выполнены все условия теоремы 1.7.1. Тогда задача (2.1.1) имеет не более одного классического решения.

В втором параграфе второй главы 2 найдены выражения для формального решения задачи (1.2.4) из главы 1 при f (x, y, t) = f (x, y).

В третьем параграфе второй главы получены априорные оценки для решения неоднородного уравнения при f (x, y, t) = f (x, y), из которых, в частности, следует устойчивость задачи (точнее, непрерывная зависимость решения от правой части в норме пространства L2 ). А именно, имеет место Теорема 2.3.1. Для решения w(x, y, t) задачи (1.2.4) из главы 1 при f (x, y, t) = f (x, y) справедливы следующие двухсторонние оценки:

где m = 0, 9, M = 272, K = A1 + A2 T 2 + A3 T 4, а положительные постоянные A1, A2, A3 определены ниже (см. формулу (2.4.8)). При этом для решения задачи (1.2.4) при f (x, y, t) = f (x, y) получено выражение вида (2.2.4) Кроме того, имеет место Теорема 2.3.2. Решение смешанной задачи 1.2.4 из главы 1 при f (x, y, t) = f (x, y) непрерывно зависит от правой части уравнения f (x, y).

В четвертом параграфе второй главы получены априорные оценки для решения сопряжнной смешанной задачи (1.9.1) для неоднородного воле нового уравнения. А именно, в пункте 2.4.1 найдено выражение (2.4.1) для формального решения задачи (1.9.1). В том числе имеет место Теорема 2.4.1.Для решения сопряжнной смешанной задачи (1.9.1) имее ют место оценки пространстве L2 (Q), Q = (0, 1)(0, 1). В частности, из оценки (2.4.1) следует непрерывная зависимость решения смешанной задачи (1.9.1) от правой части f (x, y, t) в норме пространства L2 (или устойчивость задачи (1.9.1)). Для формального решения смешанной задачи (1.9.1) при f (x, y, t) = f (x, y) получено выражение в виде (2.4.5).

В пятом параграфе второй главы получены двухсторонние априорные оценки для решения смешанной задачи (1.2.3) для однородного волнового уравнения в нормах L2 (R R) через начальные функции. Из этих оценок, в частности, следует устойчивость решения, и с учетом результатов диссертации и корректная разрешимость соответствующих несамосопряжнных сме-е шанных задач.

Наконец, в шестом параграфе второй главы получены априорные оценки в норме пространства W2 для решения смешанной задачи (2.6.1) для неоднородного уравнения при f (x, t) = f (x) В заключение автор выражает глубокую благодарность своему научному руководителю доктору физико - математичесих наук, профессору М. Исмати за постановку задач и обсуждение результатов данной диссертации.

1. Махмадуллоев З.Н. Решение одной несамосопряжнной задачи для неоде нородного уравнения колебаний мембраны. // Вестник (Пам) Института предпринимательства и сервиса, 2005, №13, с.62- 2. Махмадуллоев З.Н. Об одной нелокальной краевой задаче для уравнения колебаний мембраны. //ДАН Республики Таджикистан,2006, т.49,№3, с.215-220.

3. Исмати М., Махмадуллоев З.Н. О корректной разрешимости самосопряжнных смешанных задач для уравнения колебаний мембраны.

//Вестник (Пам) Института предпринимательства и сервиса, 2007, №16, с.34-38.

4. Исмати М., Махмадуллоев З.Н. Априорные оценки. Корректная разрешимость смешанных задач для уравнения колебаний мембраны //Известия Академии наук Республики Таджикистан.Отделение физ-мат,химии геолог.наук, 2007, №3(128), с.7-15.

5. Исмати М., Махмадуллоев З.Н. О существовании и единственности решения одной сопряжнной задачи для неоднородного уравнения колебаний мембраны. //Материалы международной научной конференции "Наука и современное образование: проблемы и перспективы", посвящено 60-летию ТГНУ, окт., 2008, - с. 21-23.

6. Махмадуллоев З.Н.- О существовании и единственности решения одной сопряженной задачи для неоднородного уравнения колебаний мембраны.

//Материалы республиканской научной конференции "Проблемы математических и естественных наук, ТГУК, март, 2010, - с. 122-124.

7. Махмадуллоев З.Н. Априорные оценки для классического решения одной несамосопряжнной задачи //ДАН Республики Таджикистан, 2011,т.54,№12, с.960-965.



Похожие работы:

«САЛГАНСКИЙ МИХАИЛ ЮРЬЕВИЧ ПОЛУЧЕНИЕ ВЫСОКОЛЕГИРОВАННОГО ГЕРМАНОСИЛИКАТНОГО СТЕКЛА И ВОЛОКОННЫХ СВЕТОВОДОВ НА ЕГО ОСНОВЕ С НИЗКИМИ ОПТИЧЕСКИМИ ПОТЕРЯМИ. Специальность: 02.00.01 –неорганическая химия Автореферат диссертации на соискание ученой степени кандидата химических наук Нижний Новгород – 2011 г. Работа выполнена в Учреждении Российской академии наук Институте химии высокочистых веществ им. Г.Г. Девятых РАН Научный руководитель : Хопин Владимир Фёдорович, кандидат...»

«ЗАВЕРКИНА МАРИНА АЛЕКСАНДРОВНА ИССЛЕДОВАНИЕ КИНЕТИКИ РЕАКЦИЙ, ПРОТЕКАЮЩИХ ПРИ СИНТЕЗЕ ПОЛИУРЕТАНОВЫХ ТЕРМОЭЛАСТО ПЛАСТОВ НА ОСНОВЕ ОЛИГООКСЕТАНДИОЛОВ 02.00.06 - Высокомолекулярные соединения АВТОРЕФЕРАТ диссертации на соискание ученой степени кандидата химических наук Черноголовка – 2007 Работа выполнена в Институте проблем химической физики Российской Академии Наук Научный руководитель : кандидат химических наук Бадамшина Эльмира Рашатовна Официальные оппоненты : доктор...»

«Стефанов Константин Сергеевич Комплекс инструментальных средств разработки программ для вычислительных систем с параллельной архитектурой 05.13.11 – Математическое и программное обеспечение вычислительных машин, комплексов и компьютерных сетей АВТОРЕФЕРАТ диссертации на соискание ученой степени кандидата физико-математических наук Москва 2007 Работа выполнена в...»

«Соколов Игорь Михайлович Когерентные и корреляционные эффекты при взаимодействии света с неравновесными многоатомными системами. специальность 01.04.02 - теоретическая физика АВТОРЕФЕРАТ диссертации на соискание ученой степени доктора физико-математических наук Санкт-Петербург 2004 Работа выполнена на кафедре Теоретическая физика в ГОУ ВПО СанктПетербургский государственный политехнический университет Научный консультант : Доктор физико-математических наук профессор, Матисов...»

«ИОСЕЛЕВИЧ Павел Алексеевич Майорановские фермионы в сверхпроводящих гибридных структурах Специальность 01.04.02 Теоретическая физика Автореферат диссертации на соискание ученой степени кандидата физико-математических наук Черноголовка – 2013 Работа выполнена в Федеральном государственном бюджетном учреждении науки Институт теоретической физики им. Л. Д. Ландау Российской академии наук. Научный руководитель : Фейгельман Михаил Викторович, доктор физ.-мат. наук., профессор...»

«Гончаров Андрей Андреевич Исследование условий обеспечения гарантированного качества обслуживания в сети Интернет Специальность 05.12.13 Системы, сети и устройства телекоммуникаций Автореферат диссертации на соискание учёной степени кандидата технических наук Москва 2007 Работа выполнена на кафедре инфокоммуникационных технологий Московского физико-технического института (ГУ). Научный руководитель : кандидат...»

«Исаев Михаил Исмаилович АНАЛИТИЧЕСКИЙ ПОДХОД К ЗАДАЧАМ ПЕРЕЧИСЛЕНИЯ ГРАФОВ СО СПЕКТРАЛЬНЫМИ ОГРАНИЧЕНИЯМИ 01.01.09 Дискретная математика и математическая кибернетика АВТОРЕФЕРАТ диссертации на соискание ученой степени кандидата физико-математических наук Москва 2013 Работа выполнена на кафедре математических основ управления Московского физико-технического института (государственного университета) Научный руководитель : кандидат физико-математических наук Тарасов Сергей...»

«Смагин Михаил Александрович ИЗМЕРЕНИЕ ПОЛЕЙ УЛЬТРАЗВУКОВЫХ МЕДИЦИНСКИХ ПРЕОБРАЗОВАТЕЛЕЙ МЕТОДАМИ АКУСТИЧЕСКОЙ ГОЛОГРАФИИ И ОПТИЧЕСКОЙ ВИЗУАЛИЗАЦИИ Специальность 01.04.06 – акустика Автореферат диссертации на соискание ученой степени кандидата физико-математических наук Москва – 2007 Работа выполнена на кафедре акустики физического факультета Московского государственного университета им. М.В. Ломоносова (МГУ). Научный руководитель : кандидат физико-математических наук...»

«УДК 510.52+519.714.27 Подольский Владимир Владимирович ОЦЕНКИ ВЕСОВ ПЕРСЕПТРОНОВ (ПОЛИНОМИАЛЬНЫХ ПОРОГОВЫХ БУЛЕВЫХ ФУНКЦИЙ) 01.01.06 – математическая логика, алгебра и теория чисел АВТОРЕФЕРАТ диссертации на соискание ученой степени кандидата физико-математических наук Москва, 2009 Работа выполнена на кафедре математической логики и теории алгоритмов Механико-математического...»

«Аристархова Анна Вячеславовна КОНТАКТНО-АВТОДУАЛЬНАЯ ГЕОМЕТРИЯ НЕКОТОРЫХ КЛАССОВ ПОЧТИ КОНТАКТНЫХ МЕТРИЧЕСКИХ МНОГООБРАЗИЙ Специальность 01.01.04 – геометрия и топология АВТОРЕФЕРАТ диссертации на соискание ученой степени кандидата физико-математических наук Казань – 2009 Работа выполнена в Московском педагогическом государственном университете на кафедре геометрии математического факультета. Научный руководитель : доктор физико-математических наук, профессор КИРИЧЕНКО ВАДИМ...»

«Кучакшоев Холикназар Соибназарович ОБ ОДНОМ КЛАССЕ КВАЗИЛИНЕЙНЫХ ЭВОЛЮЦИОННЫХ УРАВНЕНИЙ И ИХ ПРИЛОЖЕНИЯ 01.01.02 - Дифференциальные уравнения, динамические системы и оптимальное управление АВТОРЕФЕРАТ диссертации на соискание ученой степени кандидата физико-математических наук ДУШАНБЕ-2012 Работа выполнена в Российско-Таджикском(Славянском) университете Научный руководитель : доктор физико–математических наук, академик АН РТ, профессор Илолов Мамадшо Илолович Официальные...»

«БАКАНОВСКАЯ Людмила Николаевна РАЗРАБОТКА СИСТЕМЫ АВТОМАТИЗАЦИИ ТЕХНОЛОГИЧЕСКОЙ ПОДГОТОВКИ ПРОИЗВОДСТВА МУЖСКИХ КОСТЮМОВ ДЛЯ РАЗНЫХ ЦЕНОВЫХ СЕГМЕНТОВ РЫНКА Специальность 05.13.12 – Системы автоматизации проектирования (промышленность) АВТОРЕФЕРАТ диссертации на соискание ученой степени кандидата технических наук Новосибирск – 2011 Работа выполнена в Государственном образовательном учреждении высшего профессионального образования „Новосибирский технологический институт...»

«ИЗМОДЕНОВА Татьяна Юрьевна МОДЕЛИРОВАНИЕ ТЕПЛОЗАЩИТНЫХ СВОЙСТВ ГАЗОВЫХ ЗАВЕС ПРИ ПАРАМЕТРАХ, ТИПИЧНЫХ ДЛЯ ОРГАНИЗАЦИИ ПЛЕНОЧНОГО ОХЛАЖДЕНИЯ Специальность - 01.04.14 Теплофизика и теоретическая теплотехника Автореферат диссертации на соискание ученой степени кандидата технических наук Санкт-Петербург - 2011 Работа выполнена в государственном образовательном учреждении высшего профессионального образования государственный Санкт-Петербургский политехнический университет Научный...»

«ЯХИНА ИРИНА АЙРАТОВНА РАЗВИТИЕ ТЕОРИИ И МЕТОДИК ИНТЕРПРЕТАЦИИ В ЗОНДИРОВАНИЯХ МЕТОДОМ ПЕРЕХОДНЫХ ПРОЦЕССОВ ПРИ ИЗУЧЕНИИ ГЕОЭЛЕКТРИКИ СЛАБОКОНТРАСТНЫХ СРЕД Специальность 25.00.10 – Геофизика, геофизические методы поисков полезных ископаемых АВТОРЕФЕРАТ диссертации на соискание ученой степени кандидата геолого-минералогических наук Екатеринбург, 2014 Работа выполнена в ОАО НПП Научно-исследовательский и проектноконструкторский институт геофизических исследований...»

«УДК: 535.326, 534.18 Пятакова Зоя Александровна АКУСТООПТИЧЕСКОЕ ВЗАИМОДЕЙСТВИЕ В ДВУМЕРНЫХ ФОТОННЫХ КРИСТАЛЛАХ Специальность 01.04.03 – радиофизика Автореферат диссертации на соискание ученой степени кандидата физико-математических наук Москва – 2011 Работа выполнена на физическом факультете Московского государственного университета им. М.В. Ломоносова Научный руководитель : кандидат...»

«Кацоев Валерий Витальевич РАЗРАБОТКА И ИССЛЕДОВАНИЕ АРСЕНИДГАЛЛИЕВЫХ ДЕТЕКТОРОВ ИОНИЗИРУЮЩИХ ИЗЛУЧЕНИЙ С РАЗДЕЛЕННЫМИ ОБЛАСТЯМИ НАКОПЛЕНИЯ И СЧИТЫВАНИЯ ЗАРЯДА Специальность: 01.04.10 – физика полупроводников АВТОРЕФЕРАТ диссертация на соискание ученой степени кандидата физико-математических наук Москва – 2008 Работа выполнена на кафедре квантовой физики и наноэлектроники Московского государственного института электронной техники (технического университета) Научный...»

«Хосам Ахмед Сааид Авад Отман Люминесценция фосфатных стекол, легированных Dy3+ и Eu3+ автореферат диссертации на соискание учёной степени кандидата физико-математических наук Специальность 01.04.07 - физика конденсированного состояния ТОМСК – 2011 Работа выполнена в Национальном исследовательском Томском политехническом университете на кафедре лазерной и световой техники Института физики высоких технологий Научный руководитель : доктор физико-математических наук, профессор,...»

«Шашурин Георгий Вячеславович РАЗРАБОТКА МОДЕЛИ НАКОПЛЕНИЯ ПОВРЕЖДЕНИЙ ДЛЯ ОЦЕНКИ ПРОЧНОСТНОЙ НАДЕЖНОСТИ И РЕСУРСА ГРАНУЛЬНЫХ ТУРБИННЫХ ДИСКОВ АВИАЦИОННЫХ ГАЗОТУРБИННЫХ ДВИГАТЕЛЕЙ Специальность: 01.02.06 – Динамика, прочность машин, приборов и аппаратуры АВТОРЕФЕРАТ диссертации на соискание ученой степени кандидата технических наук Москва — 2007 Работа выполнена в Институте машиноведения им. А.А.Благонравова РАН и в Федеральном государственном унитарном предприятии Центральный...»

«УДК 621.378.4 Авраменко Владимир Григорьевич ЛИНЕЙНЫЙ И КВАДРАТИЧНЫЙ ОПТИЧЕСКИЙ ОТКЛИК ПЕРИОДИЧЕСКИХ КВАНТОВЫХ ЯМ Специальность 01.04.21 - лазерная физика Автореферат диссертации на соискание ученой степени кандидата физико-математических наук Москва - 2007 Работа выполнена на кафедре квантовой электроники физического факультета Московского государственного университета им. М. В. Ломоносова. Научный руководитель : кандидат физико-математических наук, старший научный сотрудник...»

«МЕЛЬНИКОВ ПАВЕЛ ВАЛЕНТИНОВИЧ ПЕРЕХОДНЫЙ РЕЖИМ ДИНАМИЧЕСКОЙ МОДУЛЯЦИИ В СПЕКТРАХ ЭПР ФТОРАЛКИЛИРОВАННЫХ АНИОН-РАДИКАЛОВ. МЕТОДЫ РЕКОНСТРУКЦИИ И ИНТЕРПРЕТАЦИИ Специальность 02.00.04 – Физическая химия АВТОРЕФЕРАТ диссертации на соискание учёной степени кандидата физико-математических наук Москва – 2010 2 Работа выполнена на кафедре физической химии им. Я.К. Сыркина Московской государственной академии тонкой химической технологии им. М.В. Ломоносова. Научный руководитель :...»






 
© 2013 www.diss.seluk.ru - «Бесплатная электронная библиотека - Авторефераты, Диссертации, Монографии, Методички, учебные программы»

Материалы этого сайта размещены для ознакомления, все права принадлежат их авторам.
Если Вы не согласны с тем, что Ваш материал размещён на этом сайте, пожалуйста, напишите нам, мы в течении 1-2 рабочих дней удалим его.