WWW.DISS.SELUK.RU

БЕСПЛАТНАЯ ЭЛЕКТРОННАЯ БИБЛИОТЕКА
(Авторефераты, диссертации, методички, учебные программы, монографии)

 

Аналитический вид обобщенных решений смешанных задач для волнового уравнения в случае нелокальных граничных условий и разрывных коэффициентов

МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

имени М.В.ЛОМОНОСОВА

ФАКУЛЬТЕТ ВЫЧИСЛИТЕЛЬНОЙ МАТЕМАТИКИ И КИБЕРНЕТИКИ

На правах рукописи

УДК 517.956.321

Кулешов Александр Андреевич

АНАЛИТИЧЕСКИЙ ВИД ОБОБЩЕННЫХ РЕШЕНИЙ

СМЕШАННЫХ ЗАДАЧ ДЛЯ ВОЛНОВОГО УРАВНЕНИЯ

В СЛУЧАЕ НЕЛОКАЛЬНЫХ ГРАНИЧНЫХ УСЛОВИЙ И

РАЗРЫВНЫХ КОЭФФИЦИЕНТОВ

01.01.02 – Дифференциальные уравнения, динамические системы и оптимальное управление

АВТОРЕФЕРАТ

диссертации на соискание ученой степени кандидата физико-математических наук

Москва –

Работа выполнена на кафедре общей математики факультета вычислительной математики и кибернетики Московского государственного университета им. М.В.Ломоносова

Научный руководитель: доктор физико-математических наук, академик РАН, профессор Ильин Владимир Александрович

Официальные оппоненты: доктор физико-математических наук, профессор Дубинский Юлий Андреевич доктор физико-математических наук, профессор Потапов Михаил Михайлович

Ведущая организация: Российский университет дружбы народов

Защита диссертации состоится 25 апреля 2012 г. в 15.30 на заседании Диссертационного совета Д 501.001.43 при Московском государственном университете им.

М.В.Ломоносова по адресу: 119991, ГСП-1, Москва, Ленинские горы, МГУ им.

М.В.Ломоносова, второй учебный корпус, факультет ВМК, ауд. 685.

С диссертацией можно ознакомиться в библиотеке факультета ВМК МГУ им.

М.В.Ломоносова.

Автореферат диссертации разослан 24 марта 2012 г.

Ученый секретарь Диссертационного совета, доктор физико-математических наук, Е.В.Захаров профессор

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность темы. Открытое в XVIII веке волновое уравнение является одним из важнейших в математической физике и связано с именами таких ученых, как Д’Аламбер, Эйлер, Д.Бернулли, Лагранж. С его помощью, наряду с механическими колебаниями, могут быть описаны процессы распространения электромагнитных, гравитационных и акустических волн в газах, жидкостях и твердых средах. Вклад в изучение классических решений смешанных или, как их еще называют, начально-краевых задач для волнового уравнения внесли многие известные математики. После выхода в свет работ Н.Винера, К.О.Фридрихса, Н.М.Гюнтера и основополагающей работы С.Л.Соболева1 в первой половине XX в. сформировался интерес к построению обобщенных решений начально-краевых задач. Фундаментальные результаты, касающиеся обобщенных решений смешанных задач для гиперболических уравнений, были получены О.А.Ладыженской2 и В.А.Ильиным3.





Начально-краевые задачи играют ключевую роль при изучении задач управления, которые рассматривались А.Г. Бутковским4, Ж.Л.Лионсом 5,6, Ф.П.Васильевым 7, и его учениками.

Sobole S. Methode nouvelle a resoudre le probleme de Cauchy pour les equations lineaires hyperboliques normales // Матем. сб., 1936, 1(43):1, с. 39–72.

Ладыженская О.А. Смешанная задача для гиперболического уравнения. Гос. Издательство ТехникоТеоретической Литературы, 1953.

Ильин В.А. О разрешимости смешанных задач для гиперболического и параболического уравнений // Успехи математических наук, 1960, т. 15, вып. 2 (92), с. 97 - 154.

Бутковский А.Г. Теория оптимального управления системами с распределенными параметрами. М.: Наука, 1965.

Лионс Ж.-Л. Оптимальное управление системами, описываемыми уравнениями с частными производными.

М.: Мир, 1972.

Lions J.L. Exact Controllability, Stabilization and Perturbations for Distributed Systems // SIAM Review. 1988.

Vol. 30. No. 1. pp. 1-68.

Васильев Ф.П. О двойственности в линейных задчах управления и наблюдения // Дифференциальные уравнения, 1995, т. 31, № 11, с. 1893 - 1900.

Васильев Ф.П., Куржанский М.А., Потапов М.М., Разгулин А.В. Приближенное решение двойственных задач управления и наблюдения. М.: Макс пресс, 2010.

В цикле работ, начатых В.А.Ильиным в 1999г. и продолженных его учениками, а также Е.И.Моисеевым и его учениками, важнейшую роль при решении задач оптимального управления играют решения начально-краевых задач, найденные в явном аналитическом виде. Именно нахождению таких решений и посвящена данная работа.

В первой главе рассматриваются смешанные задачи для уравнения колебаний струны на отрезке с граничными условиями первого либо второго рода на левом конце и с нелокальными условиями типа Бицадзе-Самарского9, связывающими значение решения или его производной по x в двух точках: в произвольной внутренней точке отрезка и в правой граничной точке. В.А.Ильиным 10,11,12 в явном виде были найдены обобщенные решения исследуемых задач, а также проведена оптимизация граничного управления, в случае, когда указанные значения связаны равенством со знаком плюс либо минус. Явный вид решения в случае закрепленного правого конца и неоднородного нелокального условия, связывающего разность значений производных решения по x в граничных точках, был найден А.А.Холомеевой13. Основным результатом главы 1 является построение в явном виде обобщенных решений исследуемых задач в случае, когда неоднородное нелокальное условие задается произвольной линейной комбинацией значений решения Бицадзе А.В., Самарский А.А. О некоторых простейших обобщениях линейных эллиптических краевых задач // ДАН СССР, 1969, т. 185, № 4, с. 739-740.





Ильин В.А. Аналитический вид оптимального граничного управления смещением на одном конце струны с модельным нелокальным граничным условием одного из четырех типов // Доклады Академии наук, 2008, т.

420, № 3, с. 309 - 313.

Ильин В.А. Оптимизация граничного управления упругой силой на одном конце струны с модельным нелокальным граничным условием одного из четырех типов // Доклады Академии наук, 2008, т. 420, № 4, с. 442 Ильин В.А. Оптимизация граничного управления на одном конце струны при наличии модельного нелокального граничного условия // Дифференциальные уравнения, 2008, т. 44, № 11, с. 1487 - 1498.

Холомеева А.А. Оптимизация нелокального граничного управления колебаниями струны с закрепленным концом за произвольный кратный 2l промежуток времени // Дифференциальные уравнения, 2008, т. 44, № 5, с. 696 - 700.

или его производной по x в указанных двух точках.

Во второй главе рассматриваются смешанные задачи для уравнения продольных колебаний неоднородного стержня и уравнения поперечных колебаний неоднородной струны, состоящих из двух участков разной плотности и упругости. Отметим, что В.А.Ильиным14 были найдены решения исследуемых задач в случае равных времен прохождения волны по каждому из участков, а также проведена оптимизация граничного управления краевым условием первого 15,16,17 и второго18 рода. В случае условия равенства импедансов ранее были найдены решения19 исследуемых смешанных задач, а также проведена оптимизация20 граничного управления. Задачи о возбуждении и успокоении колебаний неоднородного стержня с помощью граничного управления на одном конце были также рассмотрены В.А.Ильиным 21,22. Явный вид обобщенных решений исследуемых в главе Ильин В.А. О продольных колебаниях стержня, состоящего из двух участков разной плотности и упругости, в случае совпадения времени прохождения волны по каждому из этих участков // Доклады Академии наук, 2009, т. 429, № 6, с. 742 - 745.

Ильин В.А. Оптимизация граничного управления колебаниями стержня, состоящего из двух разнородных участков // Доклады Академии наук, 2011, т. 440, № 2, с. 159 - 163.

Ильин В.А. Схема оптимизации граничного управления смещением на двух концах процессом колебаний стержня, состоящего из двух разнородных участков // Доклады Академии наук, 2011, т. 441, № 6, с. 731 Ильин В.А. Оптимизация производимого смещением граничного управления колебаниями стержня, состоящего из двух разнородных участков // Дифференциальные уравнения, 2011, т. 47, № 7, с. 978 - 986.

Ильин В.А. Оптимизация производимого упругой силой граничного управления колебаниями состоящего из двух разнородных участков стержня // Доклады Академии наук, 2011, т. 440, № 6, с. 731 - 735.

Ильин В.А., Луференко П.В. Смешанные задачи, описывающие продольные колебания стержня, состоящего из двух участков, имеющих разные плотности и разные упругости, но одинаковые импедансы // Доклады Академии наук, 2009, т. 428, № 1, с. 12 - 15.

Ильин В.А., Луференко П.В. Аналитический вид оптимальных граничных управлений продольными колебаниями стержня, состоящего из двух участков, имеющих разные плотности и упругости, но одинаковые импедансы // Доклады Академии наук, 2009, т. 429, № 4, с. 455 - 458.

Ильин В.А. О приведении в произвольно заданное состояние колебаний первоначально покоящегося стержня, состоящего из двух разнородных участков // Доклады Академии наук, 2010, т. 435, № 6, с. 732 - 735.

Ильин В.А. О полном успокоении с помощью граничного управления на одном конце колебаний неоднородного стержня // Труды ин-та Математики и механики УрО РАН, 2011, т. 17, № 2, с. 88 - 96.

смешанных задач в случае произвольных длин, плотностей и модулей Юнга для каждого из участков ранее установлен не был.

Полученные в работе аналитические формулы найдут применение при решении задач управления, описываемых рассмотренными уравнениями.

Цель работы состоит в нахождении аналитического вида обобщенных решений для смешанных задач, описываемых уравнением поперечных колебаний струны с граничными и нелокальными условиями первого и второго родов, а также смешанных задач для уравнения поперечных колебаний неоднородной струны и уравнения продольных колебаний неоднородного стержня, состоящих из двух участков разной плотности и упругости, с граничными условиями первого и второго родов.

Научная новизна. В диссертации впервые получен аналитический вид обобщенных решений смешанных задач для уравнения поперечных колебаний струны на отрезке с граничными и нелокальными условиями первого и второго родов в случае, когда неоднородное нелокальное условие задается произвольной линейной комбинацией значений решения или его производной по x в двух точках: в произвольной внутренней точке отрезка и в правой граничной точке. В работе также впервые получен аналитический вид обобщенных решений смешанных задач с граничными условиями первого и второго родов для уравнения поперечных колебаний неоднородной струны и для уравнения продольных колебаний неоднородного стержня, состоящих из двух участков разной плотности и упругости, в случае произвольных длин, плотностей и модулей Юнга для каждого из участков.

Практическая значимость. Диссертация носит теоретический характер, однако ее результаты можно использовать для моделирования различных колебательных процессов в задачах математической физики. Полученные в работе аналитические формулы найдут применение при решении задач управления, описываемых рассмотренными уравнениями.

Апробация работы. Основные результаты работы докладывались на научном семинаре кафедры оптимального управления ВМК МГУ им. М.В.Ломоносова под руководством профессора Ф.П.Васильева, на научном семинаре кафедры математического моделирования НИУ МЭИ а также на всероссийских и международных конференциях, среди которых международная конференция, посвященная 110-ой годовщине И.Г.Петровского (XXIII совместное заседание ММО и семинара им. И.Г.Петровского), Москва, 2011 и 8-ая международная конференция “Function Spaces, Dierential Operators, and Nonlinear Analysis”, (FSDONA-2011), 2011, Табарц, Германия.

Публикации. Материалы диссертации опубликованы в шести работах, пять из которых - в изданиях, рекомендованных ВАК.

Структура и объем диссертации. Диссертация состоит из введения, двух глав и списка литературы, включающего 61 наименование. Общий объем диссертации составляет 78 страниц.

СОДЕРЖАНИЕ РАБОТЫ

В первой главе рассматриваются смешанные задачи для уравнения колебаний струны с нулевыми начальными условиями и с одной из следующих совокупностей граничных и нелокальных условий:

где µ(t) и (t) - произвольные функции из класса W2 [0, T ], удовлетворяющие условиям µ(0) = 0, (0) = 0;

где µ(t) - произвольная функция из класса W2 [0, T ], удовлетворяющая условию µ(0) = 0, (t) - произвольная функция из класса L2 [0, T ];

где µ(t) - произвольная функция из класса L2 [0, T ], (t) - произвольная функция из класса W2 [0, T ], удовлетворяющая условию (0) = 0;

где µ(t), (t) - произвольные функции из класса L2 [0, T ].

константа.

На прямоугольнике QT рассмотрим введенный В.А.Ильиным23 класс W2 (QT ) функций двух переменных u(x, t), непрерывных в QT и обладающих обобщенными частными производными ux (x, t) и ut (x, t), принадлежащими классу L2 (QT ), а x [0, l].

Определение 1. Обобщенным из класса W2 (QT ) решением смешанной задачи для волнового уравнения (1) с нулевыми начальными условиями (2) и с одной из совокупностей граничных и нелокальных условий (3)-(6) называется функция u(x, t) из класса W2 (QT ), удовлетворяющая интегральному тождеству Ильин В.А. Граничное управление процессом колебаний на двух концах в терминах обобщенного решения волнового уравнения с конечной энергией // Дифференциальные уравнения, 2000, т. 36, № 11, с. 1513 - 1528.

в котором (x, t) - произвольная функция из класса C 2 (QT ), удовлетворяющая В.А.Ильиным24 доказано, что каждая из рассматриваемых смешанных задач может иметь только одно обобщенное из класса W2 (QT ) решение в смысле определения 1.

В первом параграфе главы 1 в явном аналитическом виде получены обобщенные решения смешанных задач (1), (2), (3)-(6) с однородными нелокальными условиями ((t) 0).

Во втором параграфе в явном аналитическом виде получены обобщенные решения смешанных задач (1), (2), (3)-(6) с однородными граничными условиями (µ(t) 0).

В третьем параграфе сформулированы основные результаты главы 1.

Ильин В.А. Единственность обобщенных решений смешанных задач для волнового уравнения с нелокальными граничными условиями // Дифференциальные уравнения, 2008, Т.44, № 5, с. 672 - 680.

тельные числа, такие что T к формулировке основных теорем главы 1.

Получено решение смешанной задачи (1), (2), (3) и доказана следующая теорема.

Теорема 1. Для произвольного T > 0, произвольного, любого x0, удовлетворяющего неравенству 0 x0 < l, и произвольных функций µ(t) и (t) из класса W2 [0, T ], удовлетворяющих условиям µ(0) = 0, (0) = 0, смешанная задача (1), (2), (3) имеет единственное обобщенное решение u(x, t) из класса W2 (QT ), которое определяется формулой где am,n - постоянные коэффициенты, определяемые для решения задачи (1), (2), (3) с однородным нелокальным условием ((t) 0); bm,n - постоянные коэффициенты, определяемые для решения задачи (1), (2), (3) с однородным граничным условием (µ(t) 0).

Опишем алгоритм вычисления коэффициентов am,n. Положим a0,0 = 1, am,n = 0 при (m, n) 1 {(0, 0)}. Определим значения am,n при (m, n) из соотношения При k = 0 будем записывать формулу (8) для (m, n) = (k + |q 1|, q) последовательно при q = 1, m0 k. На каждом шаге из (8) через известные нам коэффициенты находим значение ak+|q1|+1,q. Далее записываем формулу (8) для (m, n) = (k + |q 1|, q) последовательно при q = 0, m0 k 2. На каждом шаге из (8) находим значение ak+|q1|+1,q. Затем, повторяя описанную выше процедуру для k = 1, k = 2 и так далее до k = m0 1, определим все am,n при (m, n) 1.

Коэффициенты bm,n определяем используя аналогичный рекуррентный алгоритм.

Аналогично получены решения смешанных задач (1), (2), (4)-(6) и доказаны следующие теоремы.

Теорема 2. Для произвольного T > 0, произвольного, любого x0, удовлетворяющего неравенству 0 x0 < l, произвольной функции µ(t) из класса W2 [0, T ], удовлетворяющей условию µ(0) = 0, и произвольной функции (t) из класса L2 [0, T ] смешанная задача (1), (2), (4) имеет единственное обобщенное решение u(x, t) из класса W2 (QT ), которое определяется формулой где am,n - постоянные коэффициенты, определяемые для решения задачи (1), (2), (4) с однородным нелокальным условием ((t) 0); bm,n - постоянные коэффициенты, определяемые для решения задачи (1), (2), (4) с однородным граничным условием (µ(t) 0).

Теорема 3. Для произвольного T > 0, произвольного, любого x0, удовлетворяющего неравенству 0 x0 < l, произвольной функции µ(t) из класса L2 [0, T ] и произвольной функции (t) из класса W2 [0, T ], удовлетворяющей условию (0) = 0, смешанная задача (1), (2), (5) имеет единственное обобщенное решение u(x, t) из класса W2 (QT ), которое определяется формулой где am,n - постоянные коэффициенты, определяемые для решения задачи (1), (2), (5) с однородным нелокальным условием ((t) 0); bm,n - постоянные коэффициенты, определяемые для решения задачи (1), (2), (5) с однородным граничным условием (µ(t) 0).

Теорема 4. Для произвольного T > 0, произвольного, любого x0, удовлетворяющего неравенству 0 x0 < l, и произвольных функций µ(t) и (t) из класса L2 [0, T ] смешанная задача (1), (2), (6) имеет единственное обобщенное решение u(x, t) из класса W2 (QT ), которое определяется формулой где am,n - постоянные коэффициенты, определяемые для решения задачи (1), (2), (6) с однородным нелокальным условием ((t) 0); bm,n - постоянные коэффициенты, определяемые для решения задачи (1), (2), (6) с однородным граничным условием (µ(t) 0).

Таким образом в первой главе в явном виде построены обобщенные решения смешанных задач (1), (2), (3)-(6) для произвольных значений параметра, любых x0 [0, l) и для произвольного T 0. Результаты главы 1 опубликованы в [1]-[3].

Во второй главе рассматриваются смешанные задачи для уравнения продольных колебаний неоднородного стержня и уравнения поперечных колебаний неоднородной струны, состоящих из двух участков разной плотности и упругости.

В первом параграфе рассматриваются смешанные задачи для уравнения продольных колебаний неоднородного стержня, состоящего из двух участков разной плотности и упругости x0 (0, l), 1, 2, k1, k2, - положительные константы; c нулевыми начальными условиями и с одной из следующих совокупностей граничных условий:

где µ(t) и (t) - произвольные функции из класса W2 [0, T ], удовлетворяющие условиям µ(0) = 0, (0) = 0;

где µ(t) - произвольная функция из класса W2 [0, T ], удовлетворяющая условию µ(0) = 0, (t) - произвольная функция из класса L2 [0, T ];

где µ(t) - произвольная функция из класса L2 [0, T ], (t) - произвольная функция из класса W2 [0, T ], удовлетворяющая условию (0) = 0;

где µ(t), (t) - произвольные функции из класса L2 [0, T ].

Определение 2. Обобщенным из класса W2 (QT ) решением смешанной задачи для уравнения (12) с нулевыми начальными условиями (13) и с одной из совокупностей граничных условий (14)-(17) называется функция u(x, t) из класса W2 (QT ), удовлетворяющая условию u(x, 0) = 0 при 0 x l, равенству при 0 t T в случае условий (14), (16) и интегральному тождеству в котором (x, t) - произвольная функция, принадлежащая классу W2 (QT ), следы которой на соответствующих участках границы прямоугольника QT обладают следующими свойствами: (x, T ) = 0, (0, t) = 0 в случае условия u(0, t) = µ(t), (l, t) = 0 в случае условия u(l, t) = (t).

В первом пункте параграфа рассматриваются задачи (12), (13), (14)-(17) с однородными граничными условиями на правом конце ((t) 0).

Обозначим через µ(t) и (t) функции, совпадающие с µ(t) и (t) соответственно следующие теоремы.

Теорема 5. Для произвольного T > 0, любого x0, удовлетворяющего неравенству 0 < x0 < l, и произвольной функции µ(t) из класса W2 [0, T ], удовлетворяющей условию µ(0) = 0, смешанная задача (12), (13), (14) с однородными граничным условием на правом конце имеет обобщенное решение u1 (x, t) из класса W2 (QT ), которое имеет следующий вид:

где bm,n, cm,n - постоянные коэффициенты, которые определяются из рекуррентных соотношений.

Теорема 6. Для произвольного T > 0, любого x0, удовлетворяющего неравенству 0 < x0 < l, и произвольной функции µ(t) из класса W2 [0, T ], удовлетворяющей условию µ(0) = 0, смешанная задача (12), (13), (15) с однородными граничным условием на правом конце имеет обобщенное решение u2 (x, t) из класса W2 (QT ), которое имеет следующий вид:

где bm,n, cm,n - постоянные коэффициенты, которые определяются из рекуррентных соотношений.

Теорема 7. Для произвольного T > 0, любого x0, удовлетворяющего неравенству 0 < x0 < l, и произвольной функции µ(t) из класса L2 [0, T ] смешанная задача (12), (13), (14) с однородными граничным условием на правом конце имеет обобщенное решение u3 (x, t) из класса W2 (QT ), которое имеет следующий вид:

где bm,n, cm,n - постоянные коэффициенты, которые определяются из рекуррентных соотношений.

Теорема 8. Для произвольного T > 0, любого x0, удовлетворяющего неравенству 0 < x0 < l, и произвольной функции µ(t) из класса L2 [0, T ] смешанная задача (12), (13), (17) с однородными граничным условием на правом конце имеет обобщенное решение u4 (x, t) из класса W2 (QT ), которое имеет следующий вид:

где bm,n, cm,n - постоянные коэффициенты, которые определяются из рекуррентных соотношений.

Для примера опишем алгоритм вычисления коэффициентов bn,k, cn,k в теореме Отметим, что выполнены вложения 1, 2.

Далее находим bn,k, cn,k при (n, k). Для этого воспользуемся следующей системой уравнений:

Решая при n = 0, 1,..., M0 1 систему (22) последовательно при k = 0, M0 n относительно bn+1,k, cn,k+1,получим их выражения через уже известные нам на каждом этапе коэффициенты bn1,k, cn,k1.

Таким образом мы определим все bn,k, cn,k при (n, k), а следовательно и bn,k при (n, k) 1, cn,k при (n, k) 2.

Отметим, что ui (x, t) = ui (x, t, µ(t), x0, k1, 1, k2, 2 ), i = 1, 4.

Во втором пункте параграфа рассматриваются задачи (12), (13), (14)-(17) с однородными граничными условиями на левом конце (µ(t) 0). Справедливы следующие утверждения.

Утверждение 1. Для произвольного T > 0, любого x0, удовлетворяющего неравенству 0 < x0 < l, и произвольной функции (t) из класса W2 [0, T ], удовлетворяющей условию (0) = 0, смешанная задача (12), (13), (14) с однородными граничным условием на левом конце имеет обобщенное решение v1 (x, t) из класса W2 (QT ), которое имеет вид:

где u1 (x, t, µ(t), x0, k1, 1, k2, 2 ) - решение, полученное в теореме 5.

Утверждение 2. Для произвольного T > 0, любого x0, удовлетворяющего неравенству 0 < x0 < l, и произвольной функции (t) из класса L2 [0, T ] смешанная задача (12), (13), (15) с однородными граничным условием на левом конце имеет обобщенное решение v2 (x, t) из класса W2 (QT ), которое имеет вид:

где u3 (x, t, µ(t), x0, k1, 1, k2, 2 ) - решение, полученное в теореме 7.

Утверждение 3. Для произвольного T > 0, любого x0, удовлетворяющего неравенству 0 < x0 < l, и произвольной функции (t) из класса W2 [0, T ], удовлетворяющей условию (0) = 0, смешанная задача (12), (13), (16) с однородными граничным условием на левом конце имеет обобщенное решение v3 (x, t) из класса W2 (QT ), которое имеет вид:

где u2 (x, t, µ(t), x0, k1, 1, k2, 2 ) - решение, полученное в теореме 6.

Утверждение 4. Для произвольного T > 0, любого x0, удовлетворяющего неравенству 0 < x0 < l, и произвольной функции (t) из класса L2 [0, T ] смешанная задача (12), (13), (17) с однородными граничным условием на левом конце имеет обобщенное решение v4 (x, t) из класса W2 (QT ), которое имеет вид:

где u4 (x, t, µ(t), x0, k1, 1, k2, 2 ) - решение, полученное в теореме 8.

В третьем пункте параграфа, используя решения однородных задач, рассмотренных в предыдущих двух пунктах, были получены решения неоднородных задач (12), (13), (14)-(17). Справедливы следующие теоремы.

Теорема 9. Для произвольного T > 0, любого x0, удовлетворяющего неравенству 0 < x0 < l, и произвольных функций µ(t) и (t) из класса W2 [0, T ], удовлетворяющих условиям µ(0) = 0, (0) = 0, смешанная задача (12), (13), (14) имеет обобщенное решение U1 (x, t) из класса W2 (QT ), которое имеет вид:

где u1 (x, t) определяется формулой (18), v1 (x, t) - формулой (23).

Теорема 10. Для произвольного T > 0, любого x0, удовлетворяющего неравенству 0 < x0 < l, произвольной функции µ(t) из класса W2 [0, T ], удовлетворяющей условию µ(0) = 0, и произвольной функции (t) из класса L2 [0, T ] смешанная задача (12), (13), (15) имеет обобщенное решение U2 (x, t) из класса W2 (QT ), которое имеет вид:

где u2 (x, t) определяется формулой (19), v2 (x, t) - формулой (24).

Теорема 11. Для произвольного T > 0, любого x0, удовлетворяющего неравенству 0 < x0 < l, произвольной функции µ(t) из класса L2 [0, T ] и произвольной функции (t) из класса W2 [0, T ], удовлетворяющей условию (0) = 0, смешанная задача (12), (13), (16) имеет обобщенное решение U3 (x, t) из класса W2 (QT ), которое имеет вид:

где u3 (x, t) определяется формулой (20), v3 (x, t) - формулой (25).

Теорема 12. Для произвольного T > 0, любого x0, удовлетворяющего неравенству 0 < x0 < l, и произвольных функций µ(t) и (t) из класса L2 [0, T ] смешанная задача (12), (13), (17) имеет обобщенное решение U4 (x, t) из класса W2 (QT ), которое имеет вид:

где u4 (x, t) определяется формулой (21), v4 (x, t) - формулой (26).

Во втором параграфе получены решения смешанных задач для уравнения поперечных колебаний неоднородной струны. При доказательстве соответствующей теоремы используются решения смешанных задач, найденные в первом параграфе второй главы.

В третьем параграфе доказана теорема единственности обобщенного решения всех рассмотренных во второй главе задач. Доказательство проводится по методу О.А.Ладыженской 2.

Основные результаты работы.

1. Найден аналитический вид обобщенных решений смешанных задач с нулевыми начальными условиями для уравнения поперечных колебаний струны с граничными и нелокальными условиями первого и второго родов.

2. Найден аналитический вид обобщенных решений смешанных задач с нулевыми начальными условиями для уравнения поперечных колебаний неоднородной струны, а также для уравнения продольных колебаний неоднородного стержня, состоящих из двух участков разной плотности и упругости, с граничными условиями первого и второго родов.

Автор глубоко благодарен В.А.Ильину за постановку задачи, постоянное внимание и поддержку в работе.

Автор благодарен Ф.П.Васильеву, А.А.Амосову, В.М.Говорову, М.М.Потапову, А.В.Разгулину за ценные советы и обсуждения отдельных вопросов по теме диссертации.

Также автор благодарит А.А.Никитина, И.Н.Смирнова за полезные обсуждения рассматриваемых задач.

Публикации автора по теме диссертации [1] Кулешов А.А. О четырех смешанных задачах для уравнения колебаний струны с граничными и нелокальными условиями первого и второго родов // Доклады Академии наук, 2009, т. 426, № 3, c. 307-309.

[2] Кулешов А.А. О четырех смешанных задачах для уравнения колебаний струны с однородными нелокальными условиями // Дифференциальные уравнения, 2009, т. 45, № 6, с. 810-817.

[3] Кулешов А.А. Смешанные задачи для уравнения колебаний струны с однородными граничными и неоднородными нелокальными условиями // Дифференциальные уравнения, 2010, т. 46, № 1, с. 98-104.

[4] Кулешов А.А. Смешанные задачи для уравнения продольных колебаний неоднородного стержня со свободным либо закрепленным правым концом, состоящего из двух участков разной плотности и упругости // Доклады Академии наук, 2012, т. 442, № 4, с. 451–454.

[5] Кулешов А.А. Смешанные задачи для уравнения продольных колебаний неоднородного стержня и уравнения поперечных колебаний неоднородной струны, состоящих из двух участков разной плотности и упругости // Доклады Академии наук, 2012, т. 442, № 5, с. 594–597.

[6] Кулешов А.А. Некоторые смешанные задачи для уравнения колебаний стержня, состоящего из двух разнородных участков // Международная конференция, посвященная 110-ой годовщине И.Г.Петровского (XXIII совместное заседание ММО и семинара им. И.Г.Петровского): Тезисы докладов, М.: Изд-во МГУ, 2011, с. 248–249.



Похожие работы:

«МУТИНА Альбина Ришатовна ВН УТРЕННИ Е ГРАДИ ЕН ТЫ МАГНИ ТНОГО ПОЛЯ В ПОРИС ТЫ Х СРЕДАХ: Э КСПЕРИМ ЕН ТАЛЬНО Е ИССЛ ЕДОВАНИ Е Специальность 01.04.07 – физика конденсированного состояния Автореферат диссертации на соискание ученой степени кандидата физико-математических наук Казань 2007 Работа выполнена на кафедре молекулярной физики...»

«Хосам Ахмед Сааид Авад Отман Люминесценция фосфатных стекол, легированных Dy3+ и Eu3+ автореферат диссертации на соискание учёной степени кандидата физико-математических наук Специальность 01.04.07 - физика конденсированного состояния ТОМСК – 2011 Работа выполнена в Национальном исследовательском Томском политехническом университете на кафедре лазерной и световой техники Института физики высоких технологий Научный руководитель : доктор физико-математических наук, профессор,...»

«Патюкова Елена Сергеевна ТЕОРЕТИЧЕСКОЕ ИЗУЧЕНИЕ МИЦЕЛЛ ДИБЛОК-СОПОЛИМЕРОВ В РАСТВОРЕ И НА ПОВЕРХНОСТИ 02.00.06. Высокомолекулярные соединения. АВТОРЕФЕРАТ диссертации на соискание ученой степени кандидата физико-математических наук Москва 2011 Работа выполнена на кафедре физики полимеров и кристаллов физического факультета Московского государственного университета имени М.В.Ломоносова Научный руководитель : доктор физико-математических наук проф. Игорь Иванович Потёмкин...»

«УДК 517.095 МАРТЕМЬЯНОВА Нина Викторовна НЕЛОКАЛЬНЫЕ ОБРАТНЫЕ ЗАДАЧИ ДЛЯ УРАВНЕНИЙ СМЕШАННОГО ЭЛЛИПТИКО-ГИПЕРБОЛИЧЕСКОГО ТИПА 01.01.02 дифференциальные уравнения, динамические системы и оптимальное управление АВТОРЕФЕРАТ диссертации на соискание ученой степени кандидата физико-математических наук Казань 2012 Работа выполнена на кафедре математики и методики обучения ФГБОУ ВПО Поволжская государственная социально-гуманитарная академия и в отделе физико-математических и...»

«Абдрашитов Андрей Владимирович СТРУКТУРНЫЕ ИЗМЕНЕНИЯ ПЛАЗМЕННО-ПЫЛЕВЫХ КРИСТАЛЛОВ В ПОЛЯХ РАЗЛИЧНОЙ КОНФИГУРАЦИИ Специальности: 01.04.07 – физика конденсированного состояния 01.04.02 – теоретическая физика АВТОРЕФЕРАТ диссертации на соискание ученой степени кандидата физико-математических наук Томск – 2011 Работа выполнена в Учреждении Российской академии наук Институте физики прочности и материаловедения Сибирского отделения РАН Научные руководители: доктор...»

«Псху Арсен Владимирович Краевые задачи для дифференциальных уравнений с частными производными дробного и континуального порядка 01.01.02 - дифференциальные уравнения Автореферат диссертации на соискание ученой степени доктора физико-математических наук Москва 2007 Работа выполнена в Научно-исследовательском институте прикладной математики и автоматизации...»

«Щепетилов Алексей Валериевич АНАЛИЗ И МЕХАНИКА НА ДВУХТОЧЕЧНО-ОДНОРОДНЫХ РИМАНОВЫХ ПРОСТРАНСТВАХ Специальность 01.01.03 – математическая физика Автореферат диссертации на соискание ученой степени доктора физико-математических наук Москва, 2009 г. Работа выполнена на кафедре математики физического факультета Московского государственного университет имени М.В.Ломоносова Официальные оппоненты :...»

«Смирнов Евгений Владимирович ДИСКРЕТНЫЕ ПРОСТРАНСТВЕННЫЕ СОЛИТОНЫ И ИХ ВЗАИМОДЕЙСТВИЕ В ФОТОРЕФРАКТИВНЫХ СИСТЕМАХ СВЯЗАННЫХ ОПТИЧЕСКИХ КАНАЛЬНЫХ ВОЛНОВОДОВ В КРИСТАЛЛАХ НИОБАТА ЛИТИЯ Специальность 01.04.05 - Оптика АВТОРЕФЕРАТ диссертации на соискание ученой степени кандидата физико-математических наук ТОМСК – 2009 Работа выполнена в ГОУ ВПО Томский государственный университет систем управления и радиоэлектроники. доктор физико-математических наук, Научный руководитель :...»

«Селиванов Никита Иванович Влияние межмолекулярных взаимодействий на фотопроцессы замещенных акридина, кумарина и нильского красного в растворах и тонких пленках 02.00.04 – физическая химия Автореферат диссертации на соискание ученой степени кандидата химических наук Томск – 2011 Работа выполнена на кафедре физической и коллоидной химии химического факультета и в лаборатории фотофизики и фотохимии молекул Томского государственного университета Научный руководитель : кандидат...»

«ЛЕРНЕР ИЛЬЯ МИХАЙЛОВИЧ АНАЛИЗ ПЕРЕХОДНЫХ ПРОЦЕССОВ В УЗКОПОЛОСНЫХ ЛИНЕЙНЫХ СИСТЕМАХ ПРИ СКАЧКАХ ФАЗЫ И АМПЛИТУДЫ ГАРМОНИЧЕСКОГО КОЛЕБАНИЯ Специальность 05.12.04 – Радиотехника, в том числе системы и устройства телевидения Автореферат диссертации на соискание ученой степени кандидата физико-математических наук Казань 2012 Диссертационная работа выполнена на кафедре Радиоэлектронных и квантовых устройств Федерального государственного бюджетного образовательного учреждения...»

«СИЛАЕВА ЕЛЕНА ПЕТРОВНА ФИЛАМЕНТАЦИЯ ФЕМТОСЕКУНДНОГО ЛАЗЕРНОГО ИМПУЛЬСА В АТМОСФЕРЕ В УСЛОВИЯХ КОГЕРЕНТНОГО РАССЕЯНИЯ В ВОДНОМ АЭРОЗОЛЕ Специальность 01.04.21 – лазерная физика АВТОРЕФЕРАТ диссертации на соискание ученой степени кандидата физико-математических наук Москва – 2010 Работа выполнена на кафедре общей физики и волновых процессов физического факультета Московского государственного университета им. М.В. Ломоносова Научный руководитель : доктор физико-математических...»

«УДК 621.373 УРАЕВ ДМИТРИЙ ВЛАДИМИРОВИЧ ДИНАМИКА ПОЛЯРИЗАЦИОННО-ОПТИЧЕСКОЙ ЗАПИСИ В ПЛЕНКАХ АЗОСОДЕРЖАЩИХ ПОЛИМЕРОВ Специальность 01.04.21 – лазерная физика АВТОРЕФЕРАТ диссертации на соискание ученой степени кандидата физико-математических наук МОСКВА - 2005 Работа выполнена на кафедре общей физики и волновых процессов физического факультета Московского государственного университета им. М.В. Ломоносова Научный руководитель : доктор физико-математических наук, профессор...»

«. Головко Валентина Александровна Вариационные структуры Пуассона–Нийенхейса и интегрируемые гамильтоновы системы Специальность 01.01.03 математическая физика АВТОРЕФЕРАТ диссертации на соискание ученой степени кандидата физико-математических наук Москва – 2011 1 Работа выполнена на кафедре математики физического факультета МГУ имени М.В.Ломоносова. Научный руководитель :...»

«ПАШИНИН Андрей Сергеевич Создание и исследование супергидрофобных покрытий на поверхности полимерных электроизоляционных материалов Специальность 02.00.04 - физическая химия 02.00.11 - коллоидная химия АВТОРЕФЕРАТ диссертации на соискание учёной степени кандидата химических наук Москва 2011 www.sp-department.ru Работа выполнена в Учреждении Российской академии наук Институте физической химии и электрохимии им. А.Н.Фрумкина РАН Научный руководитель : доктор...»

«Шарафуллин Ильдус Фанисович ВЛИЯНИЕ ВНЕШНИХ ПОЛЕЙ НА ДИНАМИЧЕСКИЕ ВЗАИМОДЕЙСТВИЯ В СЕГНЕТОМАГНИТНЫХ КРИСТАЛЛАХ Специальность 01.04.02 – Теоретическая физика АВТОРЕФЕРАТ диссертации на соискание ученой степени кандидата физико-математических наук Москва - 2011 Работа выполнена на кафедре статистической радиофизики и связи Башкирского государственного университета Научный руководитель : доктор физико-математических наук, профессор М.Х. Харрасов Официальные оппоненты : доктор...»

«НИКОНЕНКО Сергей Викторович МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ ПРОЦЕССОВ ПЕРЕНОСА В МЕМБРАННЫХ СИСТЕМАХ С УЧЕТОМ ЗАВИСИМОСТИ КИНЕТИЧЕСКИХ КОЭФФИЦИЕНТОВ ОТ КОНЦЕНТРАЦИИ 05.13.18 – математическое моделирование, численные методы и комплексы программ АВТОРЕФЕРАТ диссертации на соискание ученой степени кандидата физико-математических наук Краснодар - 2011 Работа выполнена в федеральном государственном бюджетном образовательном учреждении высшего профессионального образования Кубанский...»

«Андреев Юрий Анатольевич КОМБИНИРОВАННЫЕ ИЗЛУЧАТЕЛИ МОЩНЫХ СВЕРХШИРОКОПОЛОСНЫХ ИМПУЛЬСОВ Специальность 01.04.03 - радиофизика АВТОРЕФЕРАТ диссертации на соискание учёной степени кандидата физико-математических наук Томск - 2006 Работа выполнена в Институте сильноточной электроники СО РАН Научный руководитель : доктор ф.-м. наук, профессор Кошелев Владимир Ильич Научный консультант : кандидат ф.-м. наук, доцент Буянов Юрий Иннокентьевич Официальные оппоненты : доктор ф.-м. н.,...»

«ВОЛКОВА ИРИНА БОРИСОВНА МОДЕЛИРОВАНИЕ СЕГРЕГАЦИОННЫХ ПРОЦЕССОВ В ПОВЕРХНОСТНЫХ СЛОЯХ АМОРФНЫХ СПЛАВОВ МЕТАЛЛ-МЕТАЛЛОИД ПРИ ДЕФОРМАЦИОННОМ И НИЗКОТЕМПЕРАТУРНОМ ВОЗДЕЙСТВИЯХ Специальность 01.04.01 – Приборы и методы экспериментальной физики АВТОРЕФЕРАТ диссертации на соискание ученой степени кандидата физико-математических наук Ижевск-2004 2 Работа выполнена в Физико-техническом институте УрО РАН Научный руководитель : доктор технических наук, профессор Баянкин Владимир...»

«ГУСЕВА Дарья Викторовна КОМПЬЮТЕРНОЕ МОДЕЛИРОВАНИЕ ПОЛИМЕРНЫХ СИСТЕМ С ПРОТЕКАЮЩИМИ МАКРОМОЛЕКУЛЯРНЫМИ РЕАКЦИЯМИ Специальности 02.00.06 высокомолекулярные соединения, 01.04.07 – физика конденсированного состояния Автореферат диссертации на соискание ученой степени кандидата физико-математических наук Москва – 2012 Работа выполнена на кафедре физики полимеров и кристаллов физического факультета Московского Государственного Университета имени М. В. Ломоносова. Научные...»

«Беденко Сергей Владимирович ВКЛАД (,n)–РЕАКЦИИ В ИНТЕНСИВНОСТЬ НЕЙТРОННОГО ИЗЛУЧЕНИЯ ОБЛУЧЁННОГО КЕРАМИЧЕСКОГО ЯДЕРНОГО ТОПЛИВА Специальность 01.04.01 – Приборы и методы экспериментальной физики АВТОРЕФЕРАТ диссертации на соискание ученой степени кандидата физико-математических наук ТОМСК 2010 Работа выполнена в Государственном образовательном учреждении высшего профессионального образования Национальный исследовательский Томский политехнический университет. профессор, доктор...»






 
© 2013 www.diss.seluk.ru - «Бесплатная электронная библиотека - Авторефераты, Диссертации, Монографии, Методички, учебные программы»

Материалы этого сайта размещены для ознакомления, все права принадлежат их авторам.
Если Вы не согласны с тем, что Ваш материал размещён на этом сайте, пожалуйста, напишите нам, мы в течении 1-2 рабочих дней удалим его.