WWW.DISS.SELUK.RU

БЕСПЛАТНАЯ ЭЛЕКТРОННАЯ БИБЛИОТЕКА
(Авторефераты, диссертации, методички, учебные программы, монографии)

 

Численное моделирование роста поликристаллического кремния из хлоридных соединений

На правах рукописи

Бровин Дмитрий Сергеевич

ЧИСЛЕННОЕ МОДЕЛИРОВАНИЕ РОСТА

ПОЛИКРИСТАЛЛИЧЕСКОГО КРЕМНИЯ ИЗ ХЛОРИДНЫХ

СОЕДИНЕНИЙ

Специальность

01.04.07 – физика конденсированного состояния

Автореферат

диссертации на соискание ученой степени кандидата физико-математических наук

Санкт-Петербург - 2008

Работа выполнена на кафедре экспериментальной физики Государственного образовательного учреждения высшего профессионального образования "Санкт-Петербургский государственный политехнический университет"

Научный руководитель: доктор технических наук, профессор Колгатин Сергей Николаевич

Официальные оппоненты: доктор физико-математических наук, ведущий научный сотрудник Романов Алексей Евгеньевич кандидат физико-математических наук, доцент Сегаль Александр Соломонович

Ведущая организация: Международный научный центр Энергии Солнца

Защита состоится « 26 » ноября 2008 года в 16.00 на заседании диссертационного совета Д 212.229.05 при ГОУ ВПО "Санкт-Петербургский государственный политехнический университет" (195251, Санкт-Петербург, Политехническая ул., 29, корпус 2, ауд. 265).

С диссертацией можно ознакомиться в фундаментальной библиотеке ГОУ ВПО "Санкт-Петербургский государственный политехнический университет".

Автореферат разослан «_» 2008 года.

Ученый секретарь диссертационного совета, кандидат физико-математических наук, доцент Воробьёва Т.В.

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность работы Кремний является основой для построения современных полупроводниковых приборов, применяющихся в различных электронных устройствах. Кроме того, кремний является основным элементом для солнечной энергетики, так как 90% всех солнечных элементов изготавливаются на кремниевых подложках. Последнее десятилетие количество получаемой с помощью солнечных батарей энергии растёт в среднем на 40% в год, и на ближайшее будущее прогнозируется только увеличение темпов роста.





Современная промышленность нуждается во всё больших количествах чистого кремния. Этим обусловлена высокая актуальность выбранной для исследования темы.

Основной технологией получения чистого кремния в настоящее время является газофазный метод, идея которого заключается в получении кремнийсодержащих соединений из кремния металлургического качества и последующего восстановления чистого кремния на затравочных кристаллах. В результате получают поликристаллический кремний высокого качества, который в дальнейшем используется либо для изготовления солнечных элементов, либо в качестве сырьевого материала для выращивания монокристаллов кремния. Понимание физико-химических процессов, протекающих в ростовой камере, исключительно важно для повышения производительности реакторов, качества получаемого материала, а также снижения затрат энергии и реагентов. В данной работе рассматривается самая перспективная технология восстановления поликристаллического кремния из хлорсиланов, в которой в качестве затравки используются кремниевые стержни, нагреваемые до высокой температуры электрическим током. Такая технология получения кремния впервые была применена в компании Siemens и теперь носит общепринятое название сименс-процесса.

Одной из сложных и нерешенных проблем роста является появление на относительно гладкой и однородной поверхности кремниевых стержней областей с резко нарушенной крупномасштабной структурой, получивших наименование «попкорна». Отличительной чертой «попкорна» являются тонкие окружные щели между возмущениями, в которых наблюдается повышенное содержание посторонних примесей. Обычно «попкорн» возникает на конечных стадиях роста, ограничивая тем самым производительность реактора при получении сверхчистого кремния. В связи с постоянным повышением требований к качеству получаемого материала рекомендации по подавлению «попкорна» увеличивают актуальность выбранной темы. Особенную важность результаты работы имеют в связи с интенсивными попытками нашей страны возродить на новом техническом уровне производство кремния.

Основной целью работы является предложение адекватной и работоспособной модели реактора, позволяющей предсказывать последствия модернизаций и оптимизировать производственный процесс получения поликремния.

Для достижения поставленной цели необходимо решить несколько задач:

поликристаллического кремния из хлоридных соединений. Помимо встраивания атомов в кристаллическую решетку, модель должна описывать сложную структуру турбулентного течения газовой смеси в реакторе, объемное реагирование, теплообмен в установке (включая излучение) и нагрев стержней электрическим током.

2) Предложить критерий, позволяющий судить о возможности роста поликристаллического кремния без образования пористых структур («попкорна»).

3) Выявить общие закономерности и специфические черты физикохимических процессов, протекающих в ростовой камере, а также факторы, существенно влияющие на процесс роста и его эффективность.

4) Основываясь на полученных результатах, предложить упрощенную модель, пригодную для параметрических исследований.





5) Провести параметрические исследования, направленные на изучение зависимости эффективности использования прекурсоров, затрат энергии и скорости роста от основных технологических параметров, таких как давление в реакторе, расходы исходных компонент, температуры поверхности стрежней и т.д.

6) Дать рекомендации по возможным улучшениям конструкции реакторов и режимов их работы.

Основные положения, выносимые на защиту 1) Предлагаемая математическая модель роста поликристаллического кремния из хлоридных соединений адекватно описывает процессы в реакторе и может служить основой для различных исследований.

2) Расчеты показывают, что процесс роста может быть улучшен как за счёт оптимизации режима (без изменения конструкции аппарата), так и путём внесения некоторых изменений в конструкцию рабочей камеры.

3) Критерий устойчивости роста, предложенный в работе, позволяет предсказывать появление «попкорна» и может быть использован для выбора режима, позволяющего выращивать кремний полупроводникового качества.

4) Упрощенная модель, разработанная при помощи обобщения детальной модели, позволяет эффективно оптимизировать процесс роста поликремния, избегая чрезмерно трудоёмких вычислений.

Научная новизна работы На настоящий момент отсутствуют адекватные модели сименс-процесса, обладающие достаточной предсказательной силой. Это вызвано чрезмерной трудоемкостью расчетов и недостаточной разработанностью моделей роста, турбулентного течения в камере, причем не только на техническом, но и на научном уровне. Поэтому предлагаемая работа обладает существенной научной новизной.

Достоверность результатов Достоверность результатов подтверждается сравнением с экспериментальными данными, полученными в исследовательских и промышленных установках, успешностью внедрения полученных рекомендаций в промышленное производство, а также использованием ведущими производителями поликристаллического кремния и сименсреакторов программного обеспечения, разработанного на основе предложенных моделей, для решения практических задач. Результаты работы многократно докладывались на научных конференциях, обсуждались в кругу специалистов из МНЦ Энергии Солнца, Красмаша, ФТИ им. А.Ф.Иоффе, Гиредмета и других организаций, имеющих отношение к попыткам организации производства кремния в нашей стране.

Практическая ценность работы Экспериментальное исследование сименс-технологии представляет собой чрезвычайно трудоёмкую и дорогостоящую процедуру, так как из-за высоких температур (порядка 1200 °С), повышенного давления в камере реактора и агрессивной среды какие-либо экспериментальные измерения крайне затруднены. Кроме того, промышленный процесс непрерывно протекает в течение нескольких суток и требует огромных затрат электроэнергии и реагентов, а проблема хранения и переработки продуктов реакции оставляет возможность хоть какого-то минимального экспериментального исследования только крупным химическим предприятиям, обладающим соответствующей инфраструктурой. В связи с этим, задача адекватного численного моделирования представляет большой практический интерес. В настоящей работе предложена детальная модель получения поликристаллического кремния из газообразных хлоридных соединений. Ввиду сложности задачи, включающей одновременное моделирование большого числа взаимосвязанных процессов, она поддается только численному анализу. Последний позволяет уточнить особенности ростового процесса и осуществить его оптимизацию при существенно меньшем количестве физических экспериментов, что и составляет основную практическую ценность представляемой диссертации.

Апробация работы Работа докладывалась на кафедре экспериментальной физики; на кафедре гидроаэродинамики СПбГПУ; на совещаниях с представителями Государственного научно-исследовательского и проектного института редкометаллической промышленности; в Международном научном центре Энергии Солнца; на VII-Всероссийской молодежной конференции по физике полупроводников и полупроводниковой опто- и наноэлектроннике (2005 г., г. Санкт-Петербург), на III Российском совещании по росту кристаллов и пленок кремния и исследованию их физических свойств и структурного совершенства «Кремний-2006» (г. Красноярск); на IV Российской конференции с международным участием по физике, материаловедению и физикохимическим основам технологий получения легированных кристаллов кремния и приборных структур на их основе «Кремний-2007» (г. Москва); на V Международной конференции по актуальным проблемам физики, материаловедения, технологии и диагностики кремния, нанометровых структур и приборов на его основе «Кремний-2008» (г. Черноголовка).

Публикации по теме диссертации Основные результаты работы изложены в шести научных публикациях.

Список работ приведен в конце автореферата.

Структура и объём работы Диссертация состоит из введения, пяти глав, заключения и списка литературы из 82 наименований. Работа изложена на 111 страницах машинописного текста и включает 13 таблиц и 68 рисунков.

СОДЕРЖАНИЕ РАБОТЫ

Во введении обосновывается актуальность выбранной темы, её научное и практическое значение, формулируются основные цели и задачи исследования.

Первая глава содержит обзор литературных данных по тематике работы.

Вторая глава содержит описание модели роста поликристаллического кремния по сименс-технологии. Модель включает в себя уравнения течения многокомпонентной газовой смеси, модели теплового обмена и нагрева стержней электрическим током, а также оригинальные модели турбулентности, объёмного химического реагирования и поверхностной кинетики.

Модель турбулентности построена на основе двухслойной модели турбулентности, предложенной в [1]. Вдали от стенок решаются два уравнения (для кинетической энергии турбулентных пульсаций k и диссипации ) как в стандартной k- модели. Вблизи стенок решается только уравнение для k, а уравнение для заменяется алгебраическим соотношением. Отличия от модели из [1]: использование коррекции Като-Лаундера для генерации турбулентности, позволяющее избежать нефизичного повышения вязкости в зоне резкого торможения струи о купол реактора, применение переменного турбулентного числа Прандля, зависящего от локального числа Рейнольдса, и демпфирующей функции Ван-Дриста, позволяющие получить более близкие к экспериментам значения тепловых потоков на стержне.

Расчет одного турбулентного течения (без учета химических реакций) в такой системе представляет достаточно сложную задачу. Объемное реагирование в турбулентном потоке существенно усложняет моделирование:

кроме значительного увеличения времени расчета и необходимых ресурсов памяти компьютера, возникают сложности со сходимостью. Применение в данной задаче стандартных способов расчёта химического реагирования приводит к нарушению мольного баланса атомов на входе и выходе из реактора (с учетом атомов кремния, вошедших в кристалл). Поэтому предлагается способ расщепления задачи для упрощенного учета химических реакций в объеме. Принимая во внимание, что объёмные реакции в данной системе интенсивно протекают только при высокой температуре, которая достигается лишь вблизи поверхности стержней, расчетная область разделяется на две части: основной расчёт и расчёт реагирующих пограничных слоев. В первой проводится расчет турбулентного течения, теплообмена, нагрева стержней электрическим током и обеднения смеси во всем газовом объёме. Под обеднением смеси понимается увеличение мольного Cl/Si отношения в объеме из-за того, что часть атомов кремния уходит из газовой фазы в кристалл. При расчете обеднения считается, что рост кремния происходит по эффективной реакции: SiHCl3+H2 3HCl+Si(s). Вторая задача включает расчет объемных реакций вблизи стержня и поверхностной химии.

Процессы на поверхности рассматриваются в рамках квазиравновесной термодинамической модели, аналогичной предложенной в [2] для расчета роста нитрида галлия. Такой подход позволяет дать корректное описание ростовой поверхностной кинетики в условиях недостатка информации о деталях кинетического механизма и существенно редуцировать количество данных, необходимых для построения модели. В отличие от оригинальной модели [2], в данной работе используется модель, в которой ростовая поверхность считается состоящей из набора димеров, а также используются выражения для коэффициентов прилипания, учитывающие различные механизмы адсорбции и десорбции имеющихся в системе компонент. Считается, что атомы водорода и хлора на димерах поверхности кремния могут встречаться в следующих конфигурациях: H2-димер, Cl2-димер (с каждым из атомов кремния, образующих димер, связан атом водорода или хлора) или НCl-димер, и рассматриваются соответствующие покрытия поверхности ( q H 2, q Cl2 и q HCl ).

Согласно квазиравновесной термодинамической модели общий мольный поток компоненты (адсорбция и десорбция) на поверхности есть В последнем выражении N k - количество компонент в газовой смеси, q V = 1 - q H 2 - q HCl - q Cl2 доля свободных мест (q Si не входит в это выражение, поскольку считается, что кремний сразу встраивается в кристалл); b i (T ) коэффициент Герца-Кнудсена для i-й компоненты, a i (q V, T ) - коэффициент прилипания; Pi - парциальное давление компоненты; Pi e - «термодинамическое»

давление компоненты. Термодинамическое давление подчиняется закону разложения молекул на поверхности, K ie (T ) соответствующая константа равновесия, f ji - число атомов j-го элемента в i-й молекуле. Выражение для потоков компонент используется в качестве граничного условия на реагирующей поверхности.

Также в данной главе проводится сопоставление полученных моделей с экспериментальными данными. Отдельно верифицируется модель турбулентного течения и теплообмена и модели химического объёмного и поверхностного реагирования. Первая - путём моделирования работы специально построенной экспериментальной установки. Ввиду отсутствия достаточной экспериментальной информации по сименс-процессу, модели химического и объёмного реагирования проверяются путём сопоставления с данными по росту эпитаксиального кремния. Сравнение с экспериментами подтверждает адекватность предложенных моделей.

Третья глава посвящена разработке критерия, описывающего образование областей пористого кремния. Формулируется условие устойчивости роста и преобразуется к виду, в котором последнее выражается через величины, определяемые с помощью предложенной модели роста поликристаллического кремния. Сначала критерий выводится аналитически, затем делается его обобщение, требующее уже численной реализации.

Полученное условие устойчивого роста (т.е. получения поликристалла без зон «попкорна») выглядит следующим образом:

В этом выражении N = 6 – полуэмпирический коэффициент, Qw – тепловой DUgr - частные производные от скорости роста при постоянном составе смеси и при постоянной температуре, численно рассчитываемые с помощью предложенной модели.

В этой главе также приводятся сопоставления с экспериментальными данными по наличию областей «попкорна» на стержнях в различных режимах работы промышленной установки.

Четвёртая глава содержит результаты численного моделирования процесса роста поликристаллического кремния в различных установках.

Результаты, приведенные в этой главе, получены с помощью полномасштабной трёхмерной модели реактора.

В разделе 4.1 обсуждается структура трёхмерного течения в реакторе и его влияние на процесс. Расчёты восьмистержневого реактора показали, что основной причиной формирования областей «попкорна» в этом реакторе являются застойные зоны вблизи стержней. Для их ликвидации предложено ввести в реактор несколько дополнительных струй так, чтобы, не нарушая глобальной структуры течения газа в реакторе, добиться возникновения дополнительных контуров циркуляции газа, захватывающих застойные зоны.

Размещение дополнительных струй и перераспределение всего расхода газа между ними для достижения нужной структуры течения подобрано с помощью трехмерных расчётов. Также приводятся некоторые примеры неудачных способов подачи газа в реактор и рекомендации по их улучшению.

В разделе 4.2 рассматривается свободно-конвективный режим работы реактора, т.е. когда газ в реактор подается через сопла большого диаметра с невысокой скоростью. В таком случае снимается сложность организации струйной подачи газа, но необходимо некоторое изменение конструкции реактора. Рекомендовано перенести выходное отверстие в верхнюю часть реактора. Исследована структура течения в свободно-конвективных реакторах и показано, что газовый поток поднимается вдоль горячих стержней и опускается вдоль холодной стенки; в центральной части реактора также наблюдается слабый поток газа вниз. Расчёты показывают, что в таком режиме рост температуры поверхности и толщины пограничного слоя, согласно полученному критерию образования пористых структур, приводит к ухудшению качества кремния. Степень чистоты такого кремния уже не позволит использовать его для изготовления микроэлектронных схем, однако в солнечной энергетике использование такого материала вполне допустимо.

Кроме того, увеличение толщины пограничного слоя приводит к снижению производительности реактора.

В разделе 4.3 обсуждаются способы включения стержней в электрическую цепь. В современных реакторах стержни располагают вдоль концентрических окружностей разного радиуса и, соответственно, с разным числом стержней на каждой. При больших диаметрах стержней поверхности, обращенные к стенке реактора, за счет охлаждения излучением имеют существенно более низкую, чем средняя, температуру. Из-за этого условия роста на внутренних и внешних стержнях заметно отличаются и, соответственно, различаются скорости роста (см. рис. 1). Включение стержней в различные электрические цепи позволяет увеличить ток через внутренние стержни, повышая таким образом производительность реакторов.

Growth rate, mm/min Рис. 1. Распределение скорости роста по окружности стержня (а - одинаковый ток через все стержни, б - ток через внутренние стержни увеличен так, чтобы максимальная температура поверхности на всех стержнях стала одинаковой) В разделе 4.4 исследуется ещё одна проблема струйной подачи реагентов в реактор: слишком близко расположенные к стержню турбулентные струи переохлаждают поверхность, что крайне нежелательно и может привести к растрескиванию стержней из-за больших тепловых градиентов. Расположению струй системы подачи на заведомо больших расстояниях от стержней препятствует ограниченность диаметра камеры реактора, а его увеличение значительно усложняет реактор и увеличивает его стоимость. Уменьшение числа стержней в реакторе также крайне нежелательно. Необходимо найти некоторое компромиссное решение данной проблемы. Расчеты с помощью предложенной модели позволяют оценить степень воздействия струй на близлежащие стержни и сделать вывод о возможности использования конкретного устройства системы подачи.

Пятая глава посвящена построению упрощённой модели роста поликристаллического кремния, которая позволяет относительно быстро проводить исследования влияния различных параметров процесса на его характеристики. При описании процессов передачи тепла или вещества между потоком газа или жидкости и твердой поверхностью расчетную область часто разбивают на два слоя: ядро течения (вдали от поверхности), где температура и концентрация постоянны, и пристенный слой, непосредственно прилегающий к поверхности, в котором происходит существенное изменение этих величин. В случае турбулентного течения такое допущение обычно близко к действительности. Для сименс-реакторов характерно развитое турбулентное течение с сильной циркуляцией газа в реакторе. При правильно организованном течении газовая смесь в реакторе обедняется равномерно и имеет близкую температуру в разных частях объёма. Данное положение подтверждается как накопленным опытом трехмерного моделирования, так и производственным опытом, указывающим, что в нормальном процессе формируются стержни почти цилиндрической формы. В то же время, температура и концентрации компонент изменяются существенно в тонких пограничных слоях газа у поверхности стержней. Эти факты указывают на возможность описания процесса с помощью двухслойной модели: определение характеристик турбулентного ядра потока на базе балансовых соотношений и одномерных расчетов химического реагирования и процессов переноса в пристенном слое.

Моделирование процессов в пристенном слое осуществляется в рамках полученных моделей объёмного и поверхностного реагирования.

Рассматривается одномерная задача (по толщине пограничного слоя). В качестве размера вычислительной области задается некоторая средняя по поверхности стержней толщина слоя.

Расчеты ядра потока включают определение на основе интегральных балансовых соотношений обеднения смеси за счет встраивания атомов кремния в стержень. Мольный расход i-й компоненты на выходе из реактора складывается из потока этой компоненты через входные отверстия и потребления (выделения) её в результате процессов в пограничном слое:

Расчет температуры газа в ядре течения учитывает тепло, затрачиваемое на нагрев газовой смеси (на вход реактора подаётся холодный газ, на выходе он нагрет до достаточно высокой температуры), отбираемое от стержней тепло и уходящее через стенку реактора. Конвективные потоки тепла от стержней и через стенку рассчитываются по толщине пограничного слоя (), разности температур в ядре потока и на соответствующих стенках и по эффективной теплопроводности газа (eff). Таким образом, баланс энергии в реакторе можно выразить следующим уравнением:

в котором H – разница энтальпий газа на входе и выходе из реактора, Srods и Swall – площади поверхности стержней и внешней стенки.

Весьма важной характеристикой для реакторов данного типа является толщина пристенного слоя. От этой величины зависит скорость роста, поскольку, чем тоньше пограничный слой, тем эффективнее диффузия кремнийсодержащих компонент к ростовой поверхности и продуктов реакций от поверхности. С другой стороны, уменьшение толщины погранслоя ведет к увеличению тепловых потоков со стержней и, следовательно, к увеличению потребляемой реактором мощности. Толщина пристенной области определяется интенсивностью течения в реакторе, на которую влияет целый ряд факторов: расположения и диаметры сопел, конструкция камеры, расположения и диаметры стержней, расход газа и т.д. Эта толщина не может быть найдена с помощью предлагаемого упрощённого подхода. Её можно определить либо экспериментально, либо из трехмерного моделирования. В случае оптимизации режима работы действующего реактора возможна такая методика использования модели на практике: по имеющемуся режиму работы подобрать среднюю толщину пограничного слоя, чтобы выйти на нужную производительность и потребляемую мощность, а затем исследовать зависимость характеристик процесса от остальных параметров.

В итоге предложена упрощенная модель сименс-процесса, которая в качестве исходных параметров использует технологические параметры реактора (диаметр камеры, диаметр стержней, высота камеры, высота стержней, расходы компонент, давление, излучательная способность стенок камеры, средняя температура охлаждающей жидкости и т.д.), среднюю температуру поверхности стержней и среднюю скорость движения газа (через которую определяется толщина пограничного слоя как функция от числа Рейнольдса). С помощью модели можно оценить основные интегральные характеристики процесса: скорость роста, мгновенную производительность, производительность за процесс (при расчете серии с увеличивающимися диаметрами стержней), энергозатраты на килограмм кремния, выход кремния, ток через стержни, напряжение, мощность и т.д. За отсутствием экспериментальных данных в широком диапазоне режимов работы установок, верификация модели проводилась путём сопоставления с трехмерными расчетами. Сравнение показало адекватность предложенного подхода.

Поскольку большое количество параметров сложным образом влияет на процесс, оптимизация с использованием данной модели должна проводиться с учётом особенностей конкретного реактора и чёткого выбора критериев оптимальности процесса. Это может быть производительность, потребляемая мощность, энергозатраты на килограмм кремния, чистота материала (отсутствие «попкорна»). Также необходимо учитывать стоимость исходного сырья. В работающих по замкнутому циклу производствах необходимо учитывать затраты на конверсию тетрахлорида кремния (основного продукта реакций) в трихлорсилан (исходный реагент). В производствах, не работающих по замкнутому циклу, необходимо учитывать затраты на утилизацию большого количества тетрахлорида кремния. Некоторые способы оптимизации процесса связаны с дополнительными затратами на оборудование. Кроме того, предметом оптимизации может быть изменение режима по мере роста стержней (от затравок порядка 10 мм диаметром до 180 мм стержней).

В качестве иллюстрации возможностей параметрических расчётов ниже представлены зависимости для реактора на 36 стержней, диаметр которых равняется 70 мм. На рис. 2 (а) показана зависимость затрат электроэнергии на получение килограмма кремния (кВт·ч/кг) от расхода трихлорсилана для разных давлений в реакторе при температуре ростовой поверхности 1350 К и мольном отношении в исходной смеси H2/SiHCl3 = 3. Видно, что с увеличением давления энергозатраты меняются нелинейно: сначала снижаются, затем, начиная с некоторого давления, начинают нарастать. Такое поведение связано с тем, что при низких давлениях энергозатраты в основном определяются потерями на излучение. С ростом давления роль конвективного теплообмена увеличивается, и начинает расти потребляемая реактором мощность. Однако за счет утоньшения пограничных слоев, приводящего к увеличению скорости роста, повышение давления до определенного уровня все-таки снижает затраты электроэнергии на получение единицы массы кремния. Если обратиться к графику зависимости производительности реактора от тех же параметров (рис. 2, б), видим, что производительность растет с увеличением давления, однако разница между 6 и 10 атм уже несущественна. Следовательно, для данного реактора не имеет смысла повышать давление выше 6 атм, поскольку энергозатраты растут, а производительность практически не меняется. Стоит отметить, что современные сименс-реакторы работают при давлении 5.5 - атмосфер.

Рис. 2. Зависимости энергозатрат на получение килограмма кремния (а) и производительности реактора (б) при температуре ростовой поверхности 1350 К от расхода трихлорсилана Рис. 3. Зависимости энергозатрат на получение килограмма кремния (а) и производительности реактора (б) при расходе трихлорсилана 10 кмоль/ч от температуры ростовой поверхности На рисунке 3 приведены зависимости энергозатрат и производительности от температуры при постоянном расходе трихлорсилана равном 10 кмоль/ч.

Кривые для разных давлений сложным образом изменяются при повышении давления, однако можно увидеть, что для каждого давления имеется своя температура роста, оптимальная по энергозатратам (рис. 3, а).

Производительность реактора в диапазоне температур, пригодном для промышленного роста (1200-1500 К), растет с температурой при всех исследованных давлениях (рис. 3, б). Однако значительное повышение температуры поверхности может привести к плавлению стержней (поскольку температура внутри стержня ещё выше) или образованию «попкорна», что стоит дополнительно учитывать при оптимизации.

В заключении кратко сформулированы основные результаты работы.

1) Впервые сформулирована, проверена сравнением с экспериментом и использована для практических расчетов трехмерная модель процесса выращивания поликристаллического кремния из газовой фазы, включающая в себя турбулентное течение газовой смеси в реакторе, объемное и поверхностное реагирование, теплообмен в установке (включая излучение) и нагрев стержней электрическим током. Модель позволяет находить производительность установки, потребляемую установкой мощность, делать выводы о структуре получаемого материала, а также обнаруживать проблемные места конструкций.

Фактически, численное моделирование способно заменить дорогостоящее экспериментальное исследование процесса.

2) Впервые сформулирован критерий устойчивости роста поликристаллического кремния по сименс-технологии, позволяющий предсказывать образование или отсутствие областей «попкорна» на стержнях в заданных условиях работы установки. Даны рекомендации по повышению устойчивости роста.

3) Проанализированы процессы, сопровождающие рост поликристаллического кремния по сименс-технологии. Исследована структура течения газовой смеси, что невозможно сделать экспериментально в действующем промышленном реакторе. Показано влияние устройства системы подачи газа на производительность реактора и качество получаемого материала. На основе расчетов даны некоторые общие рекомендации по практической компоновке реакторов и организации процесса роста.

4) Предложена упрощенная модель, способная предсказывать интегральные характеристики процесса без трудоемкого полномасштабного моделирования. С помощью данной модели возможно за достаточно короткое время проводить параметрические исследования процесса.

Программный продукт на основе данной модели может использоваться непосредственно компаниями, изготавливающими сименс-реакторы или производящими поликристаллический кремний по сименс-технологии.

Список литературы [1] Chen H.C., Patel V.C. Near-wall turbulence models for complex flows including separation. AIAA Journal, vol. 26, Issue 6, 1988, pp. 641-648.

[2] S.Yu. Karpov, V.G. Prokofyev, E.V. Yakovlev, R.A. Talalaev, Yu.N. Makarov.

Novel approach to simulation of group-III nitrides growth by MOVPE. MRS Internet J. Nitride Semicond. Res. 4 (1999) 4.

Основные результаты диссертации опубликованы в работах:

1. Д.С. Бровин, С.Н. Колгатин. Анализ устойчивости роста поликристаллов кремния. VII-Всероссийская молодежная конференция по физике полупроводников и полупроводниковой опто- и наноэлектроннике: Тезисы докладов. – СПб.: Изд-во Политехнического университета, 2005. – C.21.

2. Д.С. Бровин, С.Н. Колгатин, А.А. Ловцюс. Матер. III Росс. совещ. по росту кристаллов и пленок кремния и исследованию их физ. свойств и структурного совершенства «Кремний-2006». – Красноярск: Изд-во Института физики им. Л.В. Киренского СО РАН, 2006. – C.122.

3. Д.С. Бровин, С.Н. Колгатин, А.А. Ловцюс. Аналитический критерий устойчивого роста поликристаллов из газовой фазы // Научнотехнические ведомости СПбГПУ. - 2006. - № 5-1. - С. 39-46. (перечень 4. Д.С. Бровин, А.А. Ловцюс. Зависимость интегральных характеристик “Siemens реактора от параметров процесса. От трёхмерного к одномерному подходу. Тезисы докладов IV Российской конференции с международным участием «Кремний-2007». –М.: МИСиС, 2007. – С. 31.

5. Д.С. Бровин, С.Н. Колгатин, А.А. Ловцюс. Одномерный подход к моделированию Siemens процесса // Известия высших учебных заведений. Материалы электронной техники. – 2007. - №4. - С. 6-10.

(перечень ВАК) 6. Д.С. Бровин, А.А. Ловцюс, М.Э. Рудинский. Выбор высоты реактора для восстановления кремния по Siemens технологии. Тезисы докладов V Международной конференции «Кремний-2008». – Черноголовка, 2008. –С. 85.



Похожие работы:

«Абдрашитов Андрей Владимирович СТРУКТУРНЫЕ ИЗМЕНЕНИЯ ПЛАЗМЕННО-ПЫЛЕВЫХ КРИСТАЛЛОВ В ПОЛЯХ РАЗЛИЧНОЙ КОНФИГУРАЦИИ Специальности: 01.04.07 – физика конденсированного состояния 01.04.02 – теоретическая физика АВТОРЕФЕРАТ диссертации на соискание ученой степени кандидата физико-математических наук Томск – 2011 Работа выполнена в Учреждении Российской академии наук Институте физики прочности и материаловедения Сибирского отделения РАН Научные руководители: доктор...»

«Селиванов Никита Иванович Влияние межмолекулярных взаимодействий на фотопроцессы замещенных акридина, кумарина и нильского красного в растворах и тонких пленках 02.00.04 – физическая химия Автореферат диссертации на соискание ученой степени кандидата химических наук Томск – 2011 Работа выполнена на кафедре физической и коллоидной химии химического факультета и в лаборатории фотофизики и фотохимии молекул Томского государственного университета Научный руководитель : кандидат...»

«АРБУЗОВ АНДРЕЙ АЛЕКСАНДРОВИЧ Теория и методы анализа диэлектрических спектров, описываемых дробно-степенными выражениями с действительными и комплексно-сопряженными показателями Специальность: 01.04.02 – теоретическая физика АВТОРЕФЕРАТ диссертации на соискание ученой степени кандидата физико-математических наук Казань – 2009 Работа выполнена на кафедре теоретической физики государственного образовательного учреждения высшего профессионального образования Казанский...»

«КРУТИКОВА Алла Александровна СПЕКТРАЛЬНЫЙ АНАЛИЗ КОМПОЗИТНЫХ МАТЕРИАЛОВ НА ОСНОВЕ НАНОКРИСТАЛЛИЧЕСКОГО КРЕМНИЯ Специальность: 02.00.02 – Аналитическая химия АВТОРЕФЕРАТ диссертации на соискание ученой степени кандидата химических наук Москва–2007 Работа выполнена на кафедре аналитической химии Московской Государственной академии тонкой химической технологии им. М.В. Ломоносова Научный руководитель : доктор химических наук, профессор Ищенко Анатолий Александрович Официальные...»

«МИРОНОВ ГЕННАДИЙ ИВАНОВИЧ ТЕОРИЯ ДВУМЕРНЫХ И НАНОРАЗМЕРНЫХ СИСТЕМ С СИЛЬНЫМИ КОРРЕЛЯЦИЯМИ В МОДЕЛИ ХАББАРДА 01.04.02 – теоретическая физика Автореферат диссертации на соискание ученой степени доктора физико-математических наук Казань – 2008 2 Работа выполнена на кафедре теоретической физики ГОУ ВПО Казанский государственный университет им. В.И. Ульянова-Ленина Научный консультант : доктор физико-математических наук, профессор Кочелаев Борис Иванович Официальные оппоненты :...»

«Куприянов Владислав Геннадьевич Квантование нелагранжевых теорий Специальность 01.04.02 – теоретическая физика Автореферат диссертации на соискание ученой степени кандидата физико-математических наук Томск 2007 г. Работа выполнена на кафедре квантовой теории поля физического факультета Томского государственного университета. Научные руководители: доктор физико-математических наук, профессор кафедры квантовой теории поля...»

«Смирнов Евгений Владимирович ДИСКРЕТНЫЕ ПРОСТРАНСТВЕННЫЕ СОЛИТОНЫ И ИХ ВЗАИМОДЕЙСТВИЕ В ФОТОРЕФРАКТИВНЫХ СИСТЕМАХ СВЯЗАННЫХ ОПТИЧЕСКИХ КАНАЛЬНЫХ ВОЛНОВОДОВ В КРИСТАЛЛАХ НИОБАТА ЛИТИЯ Специальность 01.04.05 - Оптика АВТОРЕФЕРАТ диссертации на соискание ученой степени кандидата физико-математических наук ТОМСК – 2009 Работа выполнена в ГОУ ВПО Томский государственный университет систем управления и радиоэлектроники. доктор физико-математических наук, Научный руководитель :...»

«Куштанова Галия Гатинишна ЧИСЛЕННОЕ МОДЕЛИРОВАНИЕ ТЕРМОГИДРОДИНАМИЧЕСКИХ ПРОЦЕССОВ В ПОДЗЕМНОЙ ГИДРОСФЕРЕ 25.00.29- Физика атмосферы и гидросферы Автореферат диссертации на соискание ученой степени доктора физико-математических наук Казань-2007 Работа выполнена в Казанском государственном университете Официальные оппоненты : доктор физико-математических наук профессор Якимов Н.Д. доктор физико-математических наук Храмченков М.Г. доктор технических наук Рамазанов А.Ш. Ведущая...»

«Зенин Алексей Александрович ПЛАЗМЕННЫЙ ИСТОЧНИК ЭЛЕКТРОНОВ ДЛЯ ГЕНЕРАЦИИ НЕПРЕРЫВНЫХ ЭЛЕКТРОННЫХ ПУЧКОВ В ОБЛАСТИ ПРЕДЕЛЬНЫХ РАБОЧИХ ДАВЛЕНИЙ ФОРВАКУУМНОГО ДИАПАЗОНА 01.04.04 – Физическая электроника АВТОРЕФЕРАТ диссертации на соискание ученой степени кандидата технических наук ТОМСК – 2014 Работа выполнена в федеральном государственном бюджетном образовательном учреждении высшего профессионального образования Томский государственный университет систем управления...»

«Альмиев Ильдар Рифович РЕЗОНАНСНАЯ ФОТОННАЯ НАКАЧКА И ИНВЕРСНАЯ ЗАСЕЛЕННОСТЬ В ЛАЗЕРНОЙ ПЛАЗМЕ Специальность 01.04.05 – Оптика АВТОРЕФЕРАТ диссертации на соискание ученой степени кандидата физико-математических наук Казань – 2004 2 Работа выполнена на кафедре оптики и спектроскопии Государственного образовательного учреждения высшего профессионального образования Казанский государственный университет им. В.И.Ульянова-Ленина. Научный руководитель : доктор...»

«Шомполова Ольга Игоревна Оптимальное управление линейными системами с нерегулярными смешанными ограничениями и определение геометрии оптимальной траектории Специальность 05.13.01 – Системный анализ, управление и обработка информации (промышленность) АВТОРЕФЕРАТ диссертации на соискание ученой степени кандидата физико-математических наук Москва - 2012 РАБОТА ВЫПОЛНЕНА В ФЕДЕРАЛЬНОМ ГОСУДАРСТВЕННОМ БЮДЖЕТНОМ УЧРЕЖДЕНИИ НАУКИ ВЫЧИСЛИТЕЛЬНЫЙ ЦЕНТР ИМ. А.А. ДОРОДНИЦЫНА РОССИЙСКОЙ...»

«Засухина Елена Семеновна Быстрое автоматическое дифференцирование в задачах оптимального управления Специальность 01.01.09 - Дискретная математика и математическая кибернетика Автореферат диссертации на соискание ученой степени кандидата физико-математических наук Москва – 2007 Работа выполнена в Вычислительном центре им. А.А. Дородницына Российской академии наук Научный руководитель : доктор физико-математических наук Зубов Владимир Иванович Официальные доктор...»

«Бабаев Антон Анатольевич СПИНОВЫЕ ЭФФЕКТЫ ПРИ ПЛОСКОСТНОМ КАНАЛИРОВАНИИ РЕЛЯТИВИСТСКИХ ЭЛЕКТРОНОВ, ПОЗИТРОНОВ И ТЯЖЕЛЫХ ВОДОРОДОПОДОБНЫХ ИОНОВ Специальность 01.04.02 – теоретическая физика АВТОРЕФЕРАТ диссертации на соискание ученой степени кандидата физико-математических наук Томск – 2009 Работа выполнена на кафедре теоретической и экспериментальной физики Томского политехнического университета и в НИИ Ядерной Физики Томского политехнического университета Научный...»

«ЛУНЁВ ИВАН ВЛАДИМИРОВИЧ ИССЛЕДОВАНИЕ СТРУКТУРЫ И ДИПОЛЬНОЙ ПОДВИЖНОСТИ ВОДОРОДОСВЯЗАННЫХ РАСТВОРОВ МЕТОДОМ ВРЕМЕННОЙ ДИЭЛЕКТРИЧЕСКОЙ СПЕКТРОСКОПИИ Специальность 01.04.03 – радиофизика АВТОРЕФЕРАТ диссертации на соискание ученой степени кандидата физико-математических наук Казань – 2007 Работа выполнена на кафедре радиоэлектроники Казанского государственного университета. кандидат физико-математических наук, Научный руководитель : доцент Ю.А. Гусев; кандидат...»

«Гарнаева Гузель Ильдаровна ОПТИЧЕСКИЕ ПЕРЕХОДНЫЕ ЭФФЕКТЫ В ПРИМЕСНЫХ КРИСТАЛЛАХ ПРИ НАЛИЧИИ ВНЕШНИХ НЕОДНОРОДНЫХ ЭЛЕКТРОМАГНИТНЫХ ПОЛЕЙ Специальность 01.04.05 - оптика АВТОРЕФЕРАТ диссертации на соискание ученой степени кандидата физико-математических наук Казань – 2009 - 2 Работа выполнена на кафедре общей и экспериментальной физики физического факультета Государственного образовательного учреждения высшего профессионального образования Татарский государственный...»

«ВОЛКОВА ИРИНА БОРИСОВНА МОДЕЛИРОВАНИЕ СЕГРЕГАЦИОННЫХ ПРОЦЕССОВ В ПОВЕРХНОСТНЫХ СЛОЯХ АМОРФНЫХ СПЛАВОВ МЕТАЛЛ-МЕТАЛЛОИД ПРИ ДЕФОРМАЦИОННОМ И НИЗКОТЕМПЕРАТУРНОМ ВОЗДЕЙСТВИЯХ Специальность 01.04.01 – Приборы и методы экспериментальной физики АВТОРЕФЕРАТ диссертации на соискание ученой степени кандидата физико-математических наук Ижевск-2004 2 Работа выполнена в Физико-техническом институте УрО РАН Научный руководитель : доктор технических наук, профессор Баянкин Владимир...»

«Гадиров Руслан Магомедтахирович Экспериментальное и квантово-химическое исследование фотопроцессов в замещенных кумарина 02.00.04 – физическая химия Автореферат диссертации на соискание ученой степени кандидата химических наук Томск – 2007 Работа выполнена на кафедре физической и коллоидной химии химического факультета и в отделении Фотоника ОСП СФТИ ТГУ в Государственном образовательном учреждении высшего профессионального образования Томский государственный университет...»

«Топовский Антон Валерьевич Построение точных решений с функциональными параметрами (2 + 1)-мерных нелинейных уравнений методом -одевания 01.04.02 – Теоретическая физика АВТОРЕФЕРАТ диссертации на соискание ученой степени кандидата физико-математических наук Новосибирск – 2011 Работа выполнена в ФГБОУ ВПО Новосибирский Государственный Технический Университет на кафедре прикладной и теоретической физики физико-технического...»

«Ильичева Наталья Сергеевна ПОЛУЧЕНИЕ НОВЫХ ФУНКЦИОНАЛЬНЫХ ПОЛИМЕРНЫХ МАТЕРИАЛОВ РАДИАЦИОННО-ХИМИЧЕСКОЙ ПРИВИВОЧНОЙ ПОЛИМЕРИЗАЦИЕЙ ВИНИЛОВЫХ МОНОМЕРОВ НА ПОЛИЭТИЛЕН 02.00.06 – высокомолекулярные соединения АВТОРЕФЕРАТ диссертации на соискание ученой степени кандидата химических наук Москва – 2011 Диссертационная работа выполнена в Федеральном Государственном Унитарном Предприятии Ордена Трудового Красного Знамени научно-исследовательский физико-химический институт имени Л.Я....»

«Наймушина Екатерина Александровна. УДК 538.945 ПРИМЕНЕНИЕ МЕТОДА РЕНТГЕНОЭЛЕКТРОННОЙ СПЕКТРОСКОПИИ ДЛЯ ИССЛЕДОВАНИЯ ХИМИЧЕСКОГО СТРОЕНИЯ СЛОЖНЫХ МЕДНЫХ ОКСИДОВ В СВЕРХПРОВОДЯЩЕМ СОСТОЯНИИ Специальность 01.04.01. – приборы и методы экспериментальной физики АВТОРЕФЕРАТ диссертации на соискание ученой степени кандидата физико-математических наук Ижевск – 2004 Работа выполнена в лаборатории электронной спектроскопии Института физики поверхности при Удмуртском государственном...»






 
© 2013 www.diss.seluk.ru - «Бесплатная электронная библиотека - Авторефераты, Диссертации, Монографии, Методички, учебные программы»

Материалы этого сайта размещены для ознакомления, все права принадлежат их авторам.
Если Вы не согласны с тем, что Ваш материал размещён на этом сайте, пожалуйста, напишите нам, мы в течении 1-2 рабочих дней удалим его.